Муниципальное бюджетное общеобразовательное учреждение Костомукшского городского округа «Средняя общеобразовательная школа №3 с углубленным изучением математики»

PACCMOTPEHO

на методическом совете Протокол от 29.08.2022 г. № 1

Руководитель МС _______ Н.С.Шумкина

УТВЕРЖДАЮ

Приказ от 29.08.2022 г. № 107

Директор_

_М.С.Неробова

Рабочая программа

по предмету «Химия» (среднее общее образование) для 10-11 классов углубленный уровень

Разработчик: Уткина С.И., учитель химии

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа учебного предмета «Химия» (профильный уровень) для 10-11 классов разработана в соответствии с требованиями и на основе:

- Федерального государственного образовательного стандарта среднего общего образования (утв. Приказом Министерства образования и науки Российской Федерации от 17 мая 2012 г. N 413 г. с изменениями и дополнениями);
- Примерной основной образовательной программы среднего общего образования (одобрена решением федерального учебно-методического объединения по общему образованию, протокол от 28 июня 2016 г. N 2/16-3);
- Примерной программы среднего общего образования по предмету «Химия»;
- авторской программы О.С. Габриеляна;
- Основной образовательной программы среднего общего образования МБОУ КГО «СОШ $N_{2}3$ »

Химия, как одна из основополагающих областей естествознания, является неотъемлемой частью образования школьников. Каждый человек живет в мире веществ, поэтому он должен иметь основы фундаментальных знаний по химии (химическая символика, химические понятия, факты, основные законы и теории), позволяющие выработать представления о составе веществ, их строении, превращениях, практическом использовании, а также об опасности, которую они могут представлять. Изучая химию, учащиеся узнают о материальном единстве всех веществ окружающего мира, обусловленности свойств веществ их составом и строением, познаваемости и предсказуемости химических явлений. Изучение свойств веществ и их превращений способствует развитию логического мышления, а практическая работа с веществами (лабораторные опыты) — трудолюбию, аккуратности и собранности. На примере химии учащиеся получают представления о методах познания, характерных для естественных наук (экспериментальном и теоретическом).

Место предмета в учебном плане

Рабочая программа рассчитана на 102 часов (3 часа в неделю), в том числе для проведения контрольных работ -6 часов, практических работ -9 часов.

Цели изучения химии в 10-11 классах:

освоение знаний о химической составляющей естественнонаучной картины мира, важнейших химических понятиях, законах и теориях органической химии; овладение умениями применять полученные знания для объяснения разнообразных химических явлений и свойств органических веществ, оценки роли органической химии в развитии современных технологий и получении новых материалов;

развитие познавательных интересов и интеллектуальных способностей в процессе самостоятельного приобретения химических знаний с использованием различных источников информации, в том числе компьютерных;

воспитание убежденности в позитивной роли органической химии в жизни современного общества, необходимости химически грамотного отношения к своему здоровью и окружающей среде;

применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в

повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Задачи:

- формирование знаний основ органической химии важнейших фактов, понятий, законов и теорий, языка науки, доступных обобщений мировоззренческого характера;
- развитие умений наблюдать и объяснять химические явления, соблюдать правила техники безопасности при работе с веществами в химической лаборатории и в повседневной жизни;
- развитие интереса к органической химии как возможной области будущей практической деятельности;
- развитие интеллектуальных способностей и гуманистических качеств личности;
- формирование экологического мышления, убежденности в необходимости охраны окружающей среды.

Личностными результатами изучения предмета «Химия» в 10-11 классах являются следующие умения:

в ценностно-ориентационной сфере:

осознание российской гражданской идентичности, патриотизма, чувства гордостиза российскую химическую науку;

в трудовой сфере:

готовность к осознанному выбору дальнейшей образовательной траектории в высшей школе, где химия является профилирующей дисциплиной;

в познавательной (когнитивной, интеллектуальной) сфере

умение управлять своей познавательной деятельностью,

готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

формирование навыков экспериментальной и исследовательской деятельности;

участие в публичном представлении результатов самостоятельной познавательной деятельности; участие в профильных олимпиадах различных уровней в соответствии с желаемыми результатами и адекватной самооценкой;

в сфере сбережения здоровья

принятие и реализация ценностей здорового и безопасного образа жизни,

неприятие вредных привычек (курения, употребления алкоголя, наркотиков) на основе знаний о свойствах наркологических и наркотических веществ; соблюдение правил техники безопасности при

работе с веществами, материалами и процессами в учебной (научной) лаборатории и на производстве

Метапредметные результаты

использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, наблюдение, измерение, проведение эксперимента, моделирование, исследовательская деятельность) для изучения различных сторон окружающей действительности;

владение основными интеллектуальными операциями: формулировка гипотезы, анализ и синтез, сравнение и систематизация, обобщение и конкретизация, выявление причинно-следственных связей и поиск аналогов;

познание объектов окружающего мира от общего через особенное к единичному;

умение генерировать идеи и определять средства, необходимые для их реализации;

умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;

использование различных источников для получения химической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата;

умение продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;

готовность и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;

умение использовать средства информационных и коммуникационных технологий (далее — ИКТ) в решении когнитивных ,коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;

владение языковыми средствами, в том числе и языком химии, умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства, в том числе и символьные (химические знаки, формулы и уравнения).

Предметные результаты

Обучающийся научится

1) описывать признаки важнейших химических понятий: вещество, химический элемент, атом, молекула, относительные атомные и молекулярные массы, ион, изотопы, химическая связь (ковалентная полярная и неполярная, ионная, водородная), электроотрицательность, а валентность, углеродный скелет, функциональная группа, изомерия (структурная и пространственная) и гомология, основные типы (соединения,

разложения, замещения, обмена), виды (гидрирования и дегидрирования, гидратации и дегидратации, полимеризации и деполимеризации, поликонденсации и изомеризации, каталитические и некаталитические, гомогенные и гетерогенные) и разновидности (ферментативные, горения, этерификации, крекинга, риформинга) реакций в органической химии, полимеры, биологически активные соединения;

- 2) выявлять взаимосвязи химических понятий для объяснения состава, строения, свойств отдельных химических объектов и явлений;
- 3) применять основных положений химических теорий: теории строения вещества
- 4) классифицировать органические вещества по различным основаниям;
- 5) установливать связь между составом, строением, свойствами, практическим применением и получением важнейших веществ;
- 6) знать основ химической номенклатуры (тривиальной и международной) и умение назвать органические соединения по формуле и наоборот;
- 7) определять валентности; видов химических связей в соединениях и типов кристаллических решеток; пространственного строения молекул; принадлежности веществ к различным классам органических соединений; гомологов и изомеров; типов, видов и разновидностей химических реакций в органической химии;
- 8) характеризовать: общие химические свойства основных классов органических соединений в плане общего, особенного и единичного;
- 9) объяснять зависимости свойств органических веществ от их состава и строения; механизмов протекания реакций между органическими и неорганическими веществами;
- 10)проводить расчеты по химическим формулам и уравнениям; проводить химический эксперимент (лабораторные и практические работы) с соблюдением требований к правилам техники безопасности при работе в химическом кабинете

Обучающийся получит возможность научиться

1.а)давать определения изученным понятиям; б) описывать демонстрационные и самостоятельно проведенные эксперименты, используя для этого естественный (русский, родной) язык и язык химии; в) объяснять строение и свойства изученных классов органических соединений; г) классифицировать изученные объекты и явления; д) наблюдать демонстрируемые и самостоятельно проводимые опыты, химические реакции, протекающие в природе и в быту; е) исследовать свойства органических веществ, определять их принадлежность к основным классам соединений; ж) обобщать знания и делать обоснованные выводы о закономерностях изменения свойств веществ; з) структурировать учебную информацию; и) интерпретировать информацию, полученную из других источников, оценивать ее научную достоверность; к) объяснять закономерности протекания химических реакций, прогнозировать возможность их протекания на основе знаний о строении вещества и законов термодинамики; м) моделировать строение простейших молекул органических веществ, кристаллов; н) проводить расчеты по химическим формулам и уравнениям; о) характеризовать изученные теории; п)

самостоятельно добывать новое для себя химическое знание, используя для этого доступные источники информации;

- 2) прогнозировать, анализировать и оценивать последствия для окружающей среды бытовой и производственной деятельности человека, связанной с переработкой веществ;
- 3) самостоятельно планировать и проводить химический эксперимент, соблюдая правила безопасной работы с веществами и лабораторным оборудованием;
- 4) оказывать первую помощь при отравлениях, ожогах и других травмах, связанных с веществами и лабораторным оборудованием.

Содержание учебного курса «Химия 10 класс»

Введение

Предмет органической химии. Особенности строения и свойств органических соединений. Значение и роль органической химии в системе естественных наук и в жизни общества. Краткий очерк истории развития органической химии.

Предпосылки создания теории строения: теория радикалов и теория типов, работы А. Кекуле, Э. Франкланда и А. М. Бутлерова, съезд врачей и естествоиспытателей в г. Шпейере. Основные положения теории строения органических соединений А.М. Бутлерова. Химическое строение и свойства органических веществ. Изомерия на примере н-бутана и изобутана.

Электронное облако и орбиталь, их формы: s и р. Электронные и электроннографические формулы атома углерода в нормальном и возбужденном состояниях. Ковалентная химическая связь и ее разновидности: s и р. Водородная связь. Сравнение обменного и донорно- акцепторного механизмов образования ковалентной связи.

Первое валентное состояние — sp3-гибридизация — на примере молекулы метана и других алканов. Второе валентное состояние — sp2- гибридизация — на примере молекулы этилена. Третье валентное состояние — sp-гибридизация — на примере молекулы-ацетилена. Геометрия молекул рассмотренных веществ и характеристика видов ковалентной связи в них. Модель Гиллеспи для объяснения взаимного отталкивания гибридных орбиталей и их расположения в пространстве с минимумом энергии.

Демонстрации. Коллекция органических веществ, материалов и изделий из них. Модели молекул СН4 и СН3ОН; С2Н2, С2Н4 и С6Н6; н- бутана и изобутана. Взаимодействие натрия с этанолом и отсутствие взаимодействия с диэтиловым эфиром. Коллекция полимеров, природных и синтетических каучуков, лекарственных препаратов, красителей. Шаростержневые модели молекул Н2, С12, N2, Н2О, СН4. Шаростержневые модели СН4, С2Н4, С2Н2.

Расчетные задачи. Нахождение молекулярной формулы вещества по его относительной плотности и массовой доле элементов в соединениях

Тема 1. Строение и классификация органических соединений

Классификация органических соединений по строению «углеродного скелета»: ациклические (алканы, алкены, алкины, алкадиены), карбоциклические (циклоалканы и арены) и гетероциклические. Классификация органических соединений по функциональным группам: спирты, фенолы, простые эфиры, альдегиды, кетоны, карбоновые кислоты, сложные эфиры.

Номенклатура тривиальная, рациональная и ИЮПАК. Рациональная номенклатура как предшественник номенклатуры ИЮПАК. Принципы образования названий органических соединений по ИЮПАК: замещения, родоначальной структуры, старшинства характеристических групп (алфавитный порядок).

Структурная изомерия и ее виды: изомерия «углеродного скелета», изомерия положения (кратной связи и функциональной группы), межклассовая изомерия. Пространственная изомерия и ее виды: геометрическая и оптическая. Биологическое значение оптической изомерии. Отражение особенностей строения молекул геометрических и оптических изомеров в их названиях.

Демонстрации. Таблицы «Название алканов и алкильных заместителей» и «Основные классы органических соединений». Шаростержневые модели органических соединений различных классов. Модели молекул изомеров разных видов изомерии.

Тема 2. Химические реакции в органической химии

Понятие о реакциях замещения. Галогенирование алканов и аренов, щелочной гидролиз галогеналканов.

Понятие о реакциях присоединения. Гидрирование, гидрогалогенирование, галогенирование. Реакции полимеризации и поликонденсации.

Понятие о реакциях отщепления (элиминирования). Дегидрирование алканов. Дегидратация спиртов. Дегидрохлорирование на примере галогеналканов. Понятие о крекинге алканов и деполимеризации полимеров.

Реакции изомеризации.

Гомолитический и гетеролитический разрыв ковалентной химической связи; образование ковалентной связи по донорно-акцепторному механизму. Понятие о нуклеофиле и электрофиле. Классификация реакций по типу реагирующих частиц (нуклеофильные и электрофильные) и принципу изменения состава молекулы. Взаимное влияние атомов в молекулах органических веществ. Индуктивный и мезомерный эффекты. Правило Марковникова.

Расчетные задачи. Комбинированные задачи.

Демонстрации. Обесцвечивание бромной воды этиленом и ацетиленом. Деполимеризация полиэтилена. Получение этилена и этанола.

Тема 3. Углеводороды

Понятие об углеводородах.

Алканы. Гомологический ряд и общая формула алканов. Строение молекулы метана и других алканов. Изомерия алканов. Физические свойства алканов. Алканы в природе. Промышленные способы получения: крекинг алканов, фракционная перегонка нефти. Лабораторные способы получения алканов: синтез Вюрца, декарбоксилирование солей карбоновых кислот, гидролиз карбида алюминия. Реакции замещения. Горение алканов в различных условиях. Термическое разложение алканов. Изомеризация алканов. Применение алканов. Механизм реакции радикального замещения, его стадии. Практическое использование знаний о механизме (свободно-радикальном) реакций в правилах техники безопасности в быту и на производстве.

Алкены. Гомологический ряд и общая формула алкенов. Строение молекулы этилена и других алкенов. Изомерия алкенов: структурная и пространственная. Номенклатура и физические свойства алкенов. Получение этиленовых углеводородов из алканов, галогеналканов и спиртов. Поляризация π-связи в молекулах алкенов на примере пропена. Понятие об индуктивном (+I) эффекте на примере молекулы пропена. Реакции присоединения (галогенирование, гидрогалогенирование, гидратация, гидрирование). Реакции окисления и полимеризации алкенов. Применение алкенов на основе их свойств. Механизм реакции электрофильного присоединения к алкенам. Окисление алкенов в «мягких» и «жестких» условиях.

Алкины. Гомологический ряд алкинов. Общая формула. Строение молекулы ацетилена и других алкинов. Изомерия алкинов. Номенклатура ацетиленовых углеводородов. Получение алкинов: метановый и карбидный способы. Физические свойства алкинов. Реакции присоединения: галогенирование, гидрогалогенирование, гидратация (реакция Кучерова), гидрирование. Тримеризация ацетилена в бензол. Применение алкинов. Окисление алкинов. Особые свойства терминальных алкинов.

Алкадиены. Общая формула алкадиенов. Строение молекул. Изомерия и номенклатура алкадиенов. Физические свойства. Взаимное расположение π-связей в молекулах алкадиенов: кумулированное, сопряженное, изолированное. Особенности строения сопряженных алкадиенов, их получение. Аналогия в химических свойствах алкенов и алкадиенов. Полимеризация алкадиенов. Натуральный и синтетический каучуки. Вулканизация каучука. Резина. Работы С.В. Лебедева. Особенности реакций присоединения к алкадиенам с сопряженными π-связями.

Циклоалканы. Понятие о циклоалканах и их свойствах. Гомологический ряд и общая формула циклоалканов. Напряжение цикла в СЗН6, С4Н8 и С5Н10, конформации С6Н12. Изомерия циклоалканов (по «углеродному скелету», цис-, транс-, межклассовая). Химические свойства циклоалканов: горение, разложение, радикальное замещение, изомеризация. Особые свойства циклопропана, циклобутана.

Арены. Бензол как представитель аренов. Строение молекулы бензола. Сопряжение π-связей. Изомерия и номенклатура аренов, их получение. Гомологи бензола. Влияние боковой цепи на электронную плотность сопряженного π-облака в молекулах гомологов бензола на примере толуола. Химические свойства бензола. Реакции замещения с участием бензола: галогенирование, нитрование и алкилирование. Применение бензола и его гомологов. Радикальное хлорирование бензола. Механизм и

условия проведения реакции радикального хлорирования бензола. Каталитическое гидрирование бензола. Механизм реакций электрофильного замещения: галогенирования и нитрования бензола и его гомологов. Сравнение реакционной способности бензола и толуола в реакциях замещения. Ориентирующее действие группы атомов СН3— в реакциях замещения с участием толуола. Ориентанты I и II рода в реакциях замещения с участием аренов. Реакции боковых цепей алкилбензолов. Природные источники углеводородов. Нефть и ее промышленная переработка. Фракционная перегонка, термический и каталитический крекинг. Природный газ, его состав и практическое использование. Каменный уголь. Коксование каменного угля. Происхождение природных источников углеводородов. Риформинг, алкилирование и ароматизация нефтепродуктов. Экологические аспекты добычи, переработки ииспользования полезных ископаемых.

Расчетные задачи. 1. Нахождение молекулярной формулы органического соединения по массе (объему) продуктов сгорания.

Демонстрации. Коллекция «Нефть. Образование нефтяной пленки на поверхности воды. Растворение парафина в бензине и испарение растворителя из смеси. Плавление парафина и его отношение к воде (растворение, сравнение плотностей, смачивание). Разделение смеси бензин— вода с помощью делительной воронки. Получение метана из ацетата натрия и гидроксида натрия. Модели молекул алканов. Отношение метана к бромной воде и раствору перманганата калия. Восстановление оксида меди (II) парафином.

Шаростержневые модели молекул структурных и пространственных изомеров алкенов. Объемные модели молекул алкенов. Получение этена из этанола. Обесцвечивание этеном бромной воды. Обесцвечивание этеном раствора перманганата калия. Горение этена.

Взаимодействие ацетилена с бромной водой. Взаимодействие ацетилена с раствором перманганата калия. Горение ацетилена. Взаимодействие ацетилена с раствором соли меди или серебра.

Модели молекул алкадиенов с различным взаимным расположением π -связей. Деполимеризация каучука.

Разделение с помощью делительной воронки смеси бензол — вода. Растворение в бензоле различных органических и неорганических (например, серы) веществ. Экстрагирование красителей и других веществ (например, иода) бензолом из водных растворов. Горение бензола. Отношение бензола к бромной воде и раствору перманганата калия. Обесцвечивание толуолом подкисленного раствора перманганата калия и бромной воды.

Лабораторные опыты. 1. Построение моделей молекул алканов. 2. Сравнение плотности и смешиваемости воды и углеводородов. 3.Построение моделей молекул алкенов. 4. Обнаружение алкенов в бензине.

Практические работы. 1. Качественный анализ органических соединений. 2. Получение и свойства этилена

Тема 4. Спирты и фенолы

Спирты. Состав и классификация спиртов. Изомерия спиртов (положение гидроксильных групп, межклассовая, «углеродного скелета»). Физические свойства спиртов, их получение. Межмолекулярная водородная связь. Особенности электронного строения молекул спиртов. Химические свойства спиртов, обусловленные наличием в молекулах гидроксильных групп: образование алкоголятов, взаимолействие с галогеноводородами, межмолекулярная И внутримолекулярная дегидратация, этерификация, окисление и дегидрирование спиртов. Особенности свойств многоатомных спиртов. Качественная реакция на многоатомные спирты. Важнейшие представители спиртов. Физиологическое действие метанола и этанола. Алкоголизм, его последствия. Профилактика алкоголизма.

Фенолы. Фенол, его физические свойства и получение. Химические свойства фенола как функция его строения. Кислотные свойства. Взаимное влияние атомов и групп в молекулах органических веществ на примере фенола. Поликонденсация фенола с формальдегидом. Качественная реакция на фенол. Применение фенола. Классификация фенолов. Сравнение кислотных свойств веществ, содержащих гидроксильную группу: воды, одно- и многоатомных спиртов, фенола. Электрофильное замещение в бензольном кольце. Применение производных фенола.

Демонстрации. Физические свойства этанола, пропанола-1 и бутанола-1. Шаростержневые модели молекул изомеров с молекулярными формулами СЗН8О и С4Н10О. Сравнение скоростей взаимодействия натрия с этанолом, пропанолом-2, глицерином.. Получение сложного эфира. Получение этена из этанола. Растворимость фенола в воде при обычной и повышенной температуре. Вытеснение фенола из фенолята натрия угольной кислотой. Реакция фенола с хлоридом железа (III).

Лабораторные опыты. 5. Построение моделей молекул изомерных спиртов. 6 Растворимость спиртов с различным числом атомов углерода в воде. 7. Растворимость многоатомных спиртов в воде. 8. Взаимодействие многоатомных спиртов с гидроксидом меди (II).

Практические работы. 3. Спирты и фенолы.

Тема 5. Альдегиды. Кетоны

Строение молекул альдегидов и кетонов, их изомерия и номенклатура. Особенности строения карбонильной группы. Физические свойства формальдегида и его гомологов. Отдельные представители альдегидов и кетонов. Химические свойства альдегидов, обусловленные наличием в молекуле карбонильной группы атомов (гидрирование, окисление аммиачными растворами оксида серебра и гидроксида меди (II)). Качественные реакции на альдегиды. Реакция поликонденсации формальдегида с фенолом. Особенности строения и химических свойств кетонов. Нуклеофильное присоединение к карбонильным соединениям. Присоединение циановодорода и гидросульфита натрия. Взаимное влияние атомов в молекулах. Галогенирование альдегидов и кетонов по ионному механизму на свету. Качественная реакция на метилкетоны.

Демонстрации.Шаростержневые модели молекул альдегидов и изомерных им кетонов. Реакция «серебряного зеркала». Окисление альдегидов гидроксидом меди (II).

Лабораторные опыты. 8. Построение моделей молекул изомерных альдегидов и кетонов. 9. Реакция «серебряного зеркала». 10.Окисление альдегидов гидроксидом меди (II).

Практические работы. 4. Альдегиды и кетоны

Тема 6. Карбоновые кислоты, сложные эфиры и жиры

Карбоновые кислоты. Строение молекул карбоновых кислот и карбоксильной группы. Классификация и номенклатура карбоновых кислот. Физические свойства карбоновых кислот и их зависимость от строения молекул. Карбоновые кислоты в природе. Биологическая роль карбоновых кислот. Общие свойства неорганических и органических кислот (взаимодействие с металлами, оксидами металлов, основаниями, солями). Влияние углеводородного радикала на силу карбоновой кислоты. Реакция этерификации, условия ее проведения. Химические свойства непредельных карбоновых кислот, обусловленные наличием π-связи в молекуле. Реакции электрофильного замещения с участием бензойной кислоты.

Сложные эфиры. Строение сложных эфиров. Изомерия сложных эфиров («углеродного скелета» и межклассовая). Номенклатура сложных эфиров. Обратимость реакции этерификации, гидролиз сложных эфиров. Равновесие реакции этерификации — гидролиза; факторы, влияющие на него. Решение расчетных задач на определение выхода продукта реакции (в %) от теоретически возможного, установление формулы и строения вещества по продуктам его сгорания (или гидролиза).

Жиры. Жиры — сложные эфиры глицерина и карбоновых кислот. Состав и строение жиров. Номенклатура и классификация жиров. Масла. Жиры в природе. Биологические функции жиров. Свойства жиров. Омыление жиров, получение мыла. Объяснение моющих свойств мыла. Гидрирование жидких жиров. Маргарин. Понятие о СМС. Объяснение моющих свойств мыла и СМС (в сравнении).

Демонстрации. Знакомство с физическими свойствами некоторых карбоновых кислот: муравьиной, уксусной, пропионовой, масляной, щавелевой, лимонной, олеиновой, стеариновой, бензойной. Возгонка бензойной кислоты. Отношение различных карбоновых кислот к воде. Получение приятно пахнущего сложного эфира. Отношение к бромной воде и раствору перманганата калия предельной и непредельной карбоновых кислот. Отношение сливочного, подсолнечного и машинного масла к водным растворам брома и перманганата калия.

Лабораторные опыты. 11. Сравнение силы уксусной и соляной кислот в реакциях с цинком. 12. Сравнение растворимости в воде карбоновых кислот и их солей. 13. Взаимодействие карбоновых кислот с основными оксидами, основаниями, амфотерными гидроксидами и солями. 14. Растворимость жиров в воде и органических растворителях.

Экспериментальные задачи. 1. Распознавание растворов ацетата натрия, карбоната натрия, силиката натрия и стеарата натрия. 2. Распознавание образцов

сливочного масла и маргарина. 3. Получение карбоновой кислоты из мыла. 4. Получение уксусной кислоты из ацетата натрия.

Практические работы. 5. Карбоновые кислоты.

Тема 7. Углеводы

Моно-, ди- и полисахариды. Представители каждой группы. Биологическая роль углеводов. Их значение в жизни человека и общества.

Моносахариды. Глюкоза, ее физические свойства. Строение молекулы. Равновесия в растворе глюкозы. Зависимость химических свойств глюкозы от строения молекулы. Взаимодействие с гидроксидом меди (II) при комнатной температуре и нагревании, этерификация, реакция «серебряного зеркала», гидрирование. Реакции брожения глюкозы: спиртового, молочнокислого. Глюкоза в природе. Биологическая роль глюкозы. Применение глюкозы на основе ее свойств. Фруктоза как изомер глюкозы. Сравнение строения молекул и химических свойств глюкозы и фруктозы. Фруктоза в природе и ее биологическая роль.

Дисахариды. Строение дисахаридов. Восстанавливающие и невосстанавливающие дисахариды. Сахароза, лактоза, мальтоза, их строение и биологическая роль. Гидролиз дисахаридов. Промышленное получение сахарозы из природного сырья.

Полисахариды. Крахмал и целлюлоза (сравнительная характеристика: строение, свойства, биологическая роль). Физические свойства полисахаридов. Химические свойства полисахаридов. Гидролиз полисахаридов. Качественная реакция на крахмал. Полисахариды в природе, их биологическая роль. Применение полисахаридов. Понятие об искусственных волокнах. Взаимодействие целлюлозы с неорганическими и карбоновыми кислотами — образование сложных эфиров.

Демонстрации. Образцы углеводов и изделий из них. Взаимодействие сахарозы с гидроксидом меди (II). Реакция «серебряного зеркала» для глюкозы. Отношение растворов сахарозы и мальтозы (лактозы) к гидроксиду меди (II) при нагревании. Ознакомление с физическими свойствами целлюлозы и крахмала. Набухание целлюлозы и крахмала в воде.

Лабораторные опыты. 15. Ознакомление с физическими свойствами глюкозы. 16. Взаимодействие глюкозы с гидроксидом меди (II) при обычных условиях и при нагревании. 17. Взаимодействие глюкозы и сахарозы с аммиачным раствором оксида серебра. 18. Качественная реакция на крахмал. 19. Знакомство с коллекцией волокон.

Экспериментальные задачи. 1. Распознавание растворов глюкозы и глицерина. 2. Определение наличия крахмала в меде, хлебе, маргарине.

Практические работы. 6. Углеводы.

Тема 8. Азотсодержащие органические соединения

Амины. Состав и строение аминов. Классификация, изомерия и номенклатура аминов. Алифатические амины. Анилин. Получение аминов: алкилирование аммиака, восстановление нитросоединений (реакция Зинина). Физические свойства аминов. Химические свойства аминов: взаимодействие с водой и кислотами. Гомологический ряд ароматических аминов. Алкилирование и ацилирование аминов. Взаимное влияние атомов в молекулах на примере аммиака, алифатических и ароматических аминов. Применение аминов.

Аминокислоты и белки. Состав и строение молекул аминокислот. Изомерия аминокислот. Двойственность кислотно-основных свойств аминокислот и ее причины. Взаимодействие аминокислот с сислотами, образование сложных эфиров. Образование внутримолекулярных солей (биполярного иона). Реакция поликонденсации аминокислот. Синтетические волокна (капрон, энант и др.). Биологическая роль аминокислот. Применение аминокислот. Белки как природные биополимеры. Пептидная группа атомов и пептидная связь. Пептиды. Белки. Первичная, вторичная и третичная структуры белков. Химические свойства белков: горение, денатурация, гидролиз, качественные (цветные) реакции. Биологические функции белков. Значение белков. Четвертичная структура белков как агрегация белковых и небелковых молекул. Глобальная проблема белкового голодания и пути ее решения.

Нуклеиновые кислоты. Общий план строения нуклеотидов. Понятие о пиримидиновых и пуриновых основаниях. Первичная, вторичная и третичная структуры

молекулы ДНК. Биологическая роль ДНК и РНК. Генная инженерия и биотехнология. Трансгенные формы животных и растений.

Демонстрации. Взаимодействие анилина с водой и кислотами. Окрашивание тканей анилиновыми красителями. Обнаружение функциональных групп в молекулах аминокислот. Нейтрализация щелочи аминокислотой. Нейтрализация кислоты аминокислотой. Растворение и осаждение белков. Денатурация белков. Качественные реакции на белки. Модели молекулы ДНК и различных видов молекул РНК..

Лабораторные опыты. 20. Образование солей аминов с кислотами. 21. Качественные реакции на белки.

Практические работы. 7. Амины, аминокислоты, белки. 8. Идентификация органических соединений.

Тема 9. Биологически активные вешества

Витамины. Понятие о витаминах. Их классификация и обозначение. Нормы потребления витаминов. Водорастворимые (на примере витамина C) и жирорастворимые (на примере витаминов A и D) витамины. Понятие об авитаминозах, гипер- и гиповитаминозах. Профилактика авитаминозов. Отдельные представители водорастворимых витаминов (C, PP, группы B) и жирорастворимых витаминов (A, D, E). Их биологическая роль.

Ферменты. Понятие о ферментах как о биологических катализаторах белковой природы. Значение в биологии и применение в промышленности. Классификация ферментов. Особенности строения и свойств ферментов: селективность и эффективность. Зависимость активности фермента от температуры и рН среды. Особенности строения и свойств в сравнении с неорганическими катализаторами.

Гормоны. Понятие о гормонах как биологически активных веществах, выполняющих эндокринную регуляцию жизнедеятельности организмов. Классификация гормонов: стероиды, производные аминокислот, полипептидные и белковые гормоны. Отдельные представители гормонов: эстрадиол, тестостерон, инсулин, адреналин.

Лекарства. Понятие о лекарствах как химиотерапевтических препаратах. Группы лекарств: сульфамиды (стрептоцид), антибиотики (пенициллин), аспирин. Безопасные способы применения, лекарственные формы. Краткие исторические сведения о возникновении и развитии химиотерапии. Механизм действия некоторых лекарственных препаратов, строение молекул, прогнозирование свойств на основе анализа химического строения. Антибиотики, их классификация по строению, типу и спектру действия. Дисбактериоз. Наркотики, наркомания и ее профилактика.

Демонстрации. Образцы витаминных препаратов. Поливитамины. Иллюстрации фотографий животных с различными формами авитаминозов. Сравнение скорости разложения H2O2 под действием фермента (каталазы) и неорганических катализаторов (KI, FeCl3, MnO2).

Лабораторные опыты. 21. Обнаружение витамина А в растительном масле. 22. Обнаружение витамина С в яблочном соке. 23. Обнаружение витамина D в желтке куриного яйца. 24. Ферментативный гидролиз крахмала под действием амилазы. 25. Разложение пероксида водорода под действием каталазы.

Практические работы. 9. Анализ некоторых лекарственных препаратов (аспирина, парацетамола).

Тематическое планирование

№ п/п	Тема	Количе ство часов	В том числе на проведение практических	Виды, формы и содержание деятельности учащихся	Содержание воспитательного потенциала темы
1.	Введение	6 ч	работ	установление доверительных отношений в	совершенствую тся коммуникативные навыки, формируется познавательный интерес к предмету, формирование позитивного восприятия школьниками требований и просьб учителя, привлечению их внимания к обсуждаемой на уроке
2.	Строение и классификация органических соединений	6 ч	_	Работая в группах (парах), анализируют учетный материал, раскрывают смысл теории химического строения, формирование уважения к заслугам отечественных ученых	информации Воспитывается уважение к исторической личности, активизируется познавательная деятельность учащихся, привлекается внимание школьников к ценностному аспекту учебного материала, вырабатывается личное отношение учащихся к

					образованию
					как ценности
3.	Химические реакции в органической химии	8 ч	-	организация их работы с текстами, заданиями	
				повышенного уровня, парные и групповые формы работы	
4.	Углеводороды	27ч	2 ч	организация их работы с текстами, заданиями повышенного уровня, парные и групповые формы работы, организация исследовательской, практической деятельности учащихся	
5.	Спирты и фенолы	10 ч	1 ч	организация их работы с текстами, заданиями повышенного уровня, парные и групповые формы работы, организация исследовательской, практической деятельности учащихся	
6.	Альдегиды и кетоны	8 ч	1 ч	организация их работы с текстами, заданиями повышенного уровня, парные и групповые формы работы, организация исследовательской, практической деятельности учащихся	приобретение навыков сам. решения проблемы, исследованию, приобретение обучающимся социально значимый опыт сотрудничества и взаимной помощи; уважительного отношения к чужому мнению
7.	Карбоновые кислоты, сложные эфиры и жиры	11 ч	1 ч	организация их работы с текстами, заданиями	приобретение навыков сам. решения

				практической деятельности учащихся	проблемы, исследованию, приобретение обучающимся социально значимый опыт сотрудничества и взаимной помощи; уважительного отношения к чужому мнению
8.	Углеводы	8 ч	1 ч	организация их работы с текстами, заданиями повышенного уровня, парные и групповые формы работы, организация исследовательской, практической деятельности учащихся	приобретение навыков сам. решения проблемы, исследованию, приобретение обучающимся социально значимый опыт сотрудничества и взаимной помощи; уважительного отношения к чужому мнению
9.	Азотсодержащие органическиесоедине ния	12 ч	2 ч	организация их работы с текстами, заданиями повышенного уровня, парные и групповые формы работы, организация исследовательской, практической деятельности учащихся	приобретение навыков сам. решения проблемы, исследованию, приобретение обучающимся социально значимый опыт сотрудничества и взаимной помощи; уважительного отношения к чужому мнению
	Биологически активныевещества	б ч	1 ч	Использование исследовательской деятельности учащихся в рамках реализации ими групповых исследовательских	возможность приобрести навыки самостоятельно го решения теоретической проблемы,

			мини-проектов	генерирования
			_	и оформления
				собственных
				идей,
				уважительного
				отношения к
				чужим идеям,
				публичного
				выступления
				перед
				аудиторией,
				аргументирован
				ия и
				отстаивания
				своей точки
				зрения
Всего	102 ч	9 ч		

Содержание учебного курса «Химия 11 класс»

Тема 1. Строение атома.

Атом - сложная частица. Доказательства сложности строения атома: катодные и рентгеновские лучи, фотоэффект, радиоактивность. Открытие электрона, протона и нейтрона. Модели строения атома (Томсона, Резерфорда, Бора). Макромир и микромир. Квантово-механические представления о строении атома.

Состояние электронов в атоме. Нуклоны: протоны и нейтроны. Нуклиды. Изобары и изотопы. Квантово-механические представления о природе электрона. Понятие об электронной орбитали и электронном облаке. Правила заполнения энергетических уровней и орбиталей электронами. Принцип минимума энергии. Электронные конфигурации атомов и ионов. Особенности электронного строения атомов хрома, меди, серебра и др.

Валентные возможности атомов химических элементов. Валентные электроны. Валентные возможности атомов химических элементов, обусловленные различными факторами. Сравнение понятий «валентность» и «степень окисления».

Периодических элементов Д. И. Менделеева и строение атома. Предпосылки открытия Периодического закона. Открытие закона. Первая формулировка Периодического закона. Структура Периодической системы элементов. Современные представления о химическом элементе. Вторая формулировка Периодического закона. Периодическая система и строение атома. Физический смысл порядкового номера элемента, номеров группы и периода. Периодическое изменение свойств элементов: радиуса атома, электроотрицательности. Причины изменения металлических и неметаллических свойств элементов в группах и периодах, в том числе и в больших. Третья формулировка Периодического закона. Значение Периодического закона и Периодической системы для развития науки и понимания химической картины мира.

Демонстрации. Фотоэффект. Катодные лучи (электронно-лучевые трубки), модели электронных облаков (орбиталей) различной формы. Различные варианты таблиц Периодической системы химических элементов Д.И. Менделеева. Образцы простых веществ, оксидов и гидроксидов элементов 3-го периода и демонстрация их свойств.

Тема 2. Строение вещества. Дисперсные системы»

Химическая связь. Единая природа химической связи. Понятие о химической связи как процессе взаимодействия атомов с образованием молекул, ионов и радикалов. Виды химической связи. Аморфные и кристаллические вещества. Ионная химическая связь. Дипольный момент связи. Свойства веществ с ионной кристаллической решеткой.

Ковалентная связь. Метод валентных связей в образовании ковалентной связи. Электроотрицательность и разновидности ковалентной связи по этому признаку: полярная и неполярная. Способ перекрывания электронных орбиталей и классификация ковалентных связей по этому признаку: σ - и π -связи. Кратность ковалентных связей и их классификация по этому признаку: одинарная, двойная и т.д. Механизмы образования ковалентной связи: обменный и донорно-акцепторный. Кристаллическое строение веществ с этим типом связи, их физические свойства.

Металлическая связь и ее особенности. Физические свойства металлов как функция металлической связи и металлической кристаллической решетки.

Водородная связь и механизм ее образования. Межмолекулярная и внутримолекулярная водородные связи. Физические свойства веществ с водородной связью. Биологическая роль водородной связи в организации структур биополимеров.

Гибридизация орбиталей и геометрия молекул. Теория гибридизации. Типы гибридизации электронных орбиталей и геометрия органических и неорганических молекул.

Теория строения химических соединений, съезд естествоиспытателей в г. Шпейере. Личностные качества А.М. Бутлерова. Основные положения теории химического строения органических соединений и современной теории строения. Изомерия в органической химии. Взаимное влияние атомов в молекулах органических и неорганических веществ.

Основные направления развития теории строения органических соединений (зависимость свойств веществ не только от химического, но и от их электронного и пространственного строения). Индукционный и мезомерный эффекты. Стереорегулярность.

Диалектические основы общности двух ведущи теорий х и м и и. Диалектические основы общности Периодического закона Д.И. Менделеева и теории строения А.М. Бутлерова в становлении (работы предшественников, накопление фактов, участие в съездах, русский менталитет), предсказании (новые элементы – Ga, Se, Ge и новые вещества – изомеры) и развитии (три формулировки).

Полимеры органические и неорганические и еские и неорганические. Полимеры. Основные понятия химии высокомолекулярных соединений: «мономер», «полимер», «макромолекула», «структурное звено», «степень полимеризации», «молекулярная масса». Способы получения полимеров: реакции полимеризации и поликонденсации. Строение полимеров: геометрическая форма макромолекул, кристалличность и аморфность, стереорегулярность. Полимеры органические и неорганические. Каучуки. Пластмассы. Волокна. Биополимеры: белки и нуклеиновые кислоты. Неорганические полимеры атомного строения (аллотропные модификации углерода, кристаллический кремний, селен и теллур цепочечного строения, диоксид кремния и др.) и молекулярного строения (сера пластическая и др.).

Дисперсные системы. Чистые вещества и смеси. Классификация химических веществ по чистоте. Состав смесей. Растворы. Растворимость веществ. Классификация растворов в зависимости от состояния растворенного вещества (молекулярные, молекулярно-ионные, ионные). Типы растворов по содержанию растворенного вещества. Концентрация растворов.

Понятие «дисперсная система». Классификация дисперсных систем в зависимости от агрегатного состояния дисперсионной среды и дисперсной фазы, а также по размеру частиц. Грубодисперсные системы: эмульсии и суспензии.

Расчетные задачи. Расчеты по химическим формулам.

Расчеты, связанные с понятиями «массовая доля» и «объемная доля» компонентов смеси. Вычисление молярной концентрации растворов.

Демонстрации. Модели кристаллических решеток веществ с различным типом связей. Модели молекул различной геометрии. Модели кристаллических решеток алмаза и графита. Модели молекул изомеров структурной и пространственной изомерии. Модели кристаллических решеток металлов. Модели из воздушных шаров, отражающие пространственное расположение sp^3 -, sp^2 -, sp-гибридных орбиталей в молекулах органических и неорганических веществ.

Коллекция пластмасс и волокон. Образцы неорганических полимеров: серы пластической, фосфора красного, кварца и др. Модели молекул белков и ДНК. Образцы различных систем с жидкой средой. Коагуляция. Синерезис. Эффект Тиндаля.

Лабораторные опыты. 1. Свойства гидроксидов элементов 3-го периода. 2. Ознакомление с образцами органических и неорганических полимеров.

Тема 3. «Химические реакции»

Класси фикация химических реакций в органической и неорганической химии. Понятие о химической реакции, отличие ее от ядерной реакции. Аллотропные и полиморфные превращения веществ.

Классификация реакций в неорганической химии по числу и составу реагирующих веществ (разложения, соединения, замещения, обмена).

Классификация химических реакций в органической химии (присоединения, замещения, отщепления, изомеризации).

Классификация реакций по тепловому эффекту, по фазовому составу, по участию катализатора. Обратимые и необратимые реакции.

Окислительно-восстановительные реакции и реакции, идущие без изменения степеней окисления элементов. Межмолекулярные и внутримолекулярные окислительно-восстановительные реакции. Реакции диспропорционирования. Методы составления окислительно-восстановительных реакций: метод электронного баланса.

Основные понятия химической термодинамики. Тепловой эффект химической реакции. Закон Гесса и следствия из него. Теплота (энтальпия) образования вещества. Термохимические расчеты.

Понятие энтропии. Второе начало термодинамики. Свободная энергия Гиббса. Расчеты самопроизвольного протекания химической реакции.

Скорость химической реакции. Кинетическое уравнение реакции и константа скорости химической реакции. Кинетическое уравнение реакции и константа скорости химической реакции. Факторы, влияющие на скорость химической реакции (природа реагирующих веществ, концентрация, температура, поверхность соприкосновения веществ).

Понятие о катализаторах и катализе. Гомогенный и гетерогенный катализ. Ферменты.

Обратимые химические реакции, изменение энергии Гиббса в обратимом процессе. Химическое равновесие и его динамический характер. Константа химического равновесия. Принцип ЛеШателье. Смещение химического равновесия.

Электролиты и неэлектролиты. Электролитыческая диссоциация, механизм диссоциации веществ с различными видами связи. Сильные и слабые электролиты. Степень диссоциации и ее зависимость от различных факторов. Ионное произведение воды. Понятие рН. Водородный показатель.

Гидролиз как обменный процесс. Обратимый и необратимый гидролиз органических и неорганических веществ. Гидролиз солей. Гидролиз органических соединений как химическая основа обмена веществ. Гидролиз АТФ как основа энергетического обмена в живых организмах. Усиление и подавление обратимого гидролиза.

Расчетные задачи. Расчеты по термохимическим уравнениям. Вычисление теплового эффекта реакции по теплоте образования реагирующих веществ и продуктов реакции. Определение рН раствора заданной молярной концентрации. Расчет средней скорости реакции по концентрациям реагирующих веществ. Вычисления с использованием понятия «температурный коэффициент скорости реакции». Нахождение константы равновесия реакции по равновесным концентрациям и определение исходных концентраций веществ.

Демонстрации. Аллотропные превращения серы и фосфора. Реакции, идущие с образованием газа, осадка или воды. Окислительно-восстановительные реакции в неорганической химии (взаимодействие цинка с растворами соляной кислоты и сульфата меди (II)). Окислительно-восстановительные реакции в органической химии (окисление альдегида в карбоновую кислоту — реакция «серебряного зеркала» или реакция с гидроксидом меди (II), окисление этанола на медном катализаторе). Изучение зависимости скорости химической реакции от концентрации веществ, температуры (взаимодействие тиосульфата натрия с серной кислотой), поверхности соприкосновения веществ (взаимодействие соляной кислоты с гранулами и порошками алюминия или цинка). Проведение каталитических реакций разложения пероксида водорода, горения сахара, взаимодействие иода и алюминия. Коррозия железа в водной среде с уротропином и без него. Наблюдение смещения химического равновесия в системе:

$$FeCl_3 + 3KSCN \leftrightarrow Fe(SCN)_3 + 3KCl$$

Сравнение электропроводности растворов электролитов. Смещение равновесия диссоциации слабых кислот. Индикаторы и изменение их окраски в разных средах. Ионные реакции и условия их протекания. Гидролиз карбонатов, сульфатов и силикатов щелочных металлов, нитрата свинца (II) или цинка, хлорида аммония. Сернокислый и ферментативный гидролиз углеводов.

Лабораторные опыты. 3.Получение кислорода разложением пероксида водорода и перманганата калия. 4.Реакции, идущие с образованием осадка, газа, воды для неорганических и органических кислот. 5.Использование индикаторной бумаги для определения рН слюны, желудочного сока и других соков организма человека. 6.Различные случаи гидролиза солей.

Практическая работа № 1. Скорость химических реакций. Химическое равновесие. Практическая работа № 2. Решение экспериментальных задач по теме «Гидролиз». Тема 4. «Вещества и их свойства»

Классификация неорганических веществ. Вещества простые и сложные. Благородные газы. Сравнительная характеристика простых веществ: металлов и неметаллов, относительность этой классификации. Сложные вещества: бинарные соединения (оксиды, галогениды, сульфиды и т.д.), гидроксиды, соли.

Понятие о комплексном соединении.

Донорно-акцепторное взаимодействие комплексообразователей и лигандов. Координационное число комплексообразователя. Внутренняя и внешняя сфера комплексов.

Диссоциация комплексных соединений. Применение комплексных соединений в химическом анализе и в промышленности, их роль в природе.

Классификация органических веществ по строению углеродной цепи (ациклические и циклические, насыщенные и ненасыщенные, карбоциклические и гетероциклические, ароматические углеводороды). Углеводороды (алканы, алкены, алкины, циклоалканы, алкадиены, арены,

галогенопроизводные углеводородов). Функциональные группы (гидроксильная, карбонильная, карбоксильная, нитрогруппа, аминогруппа) и классификация веществ по этому признаку.

М е т а л л ы. Положение металлов в Периодической системе Д. И. Менделеева. Особенности строения атомов и кристаллов. Полиморфизм. Общие физические свойства металлов. Ферромагнетики, парамагнетики и диамагнетики.

Электрохимический ряд напряжений металлов. Стандартный водородный электрод. Стандартные электродные потенциалы. Общие химические свойства металлов: взаимодействие с неметаллами, водой, бинарными соединениями, кислотами, солями. Взаимодействие некоторых металлов с растворами щелочей. Взаимодействие активных металлов с органическими соединениями. Особенности реакций металлов с азотной и концентрированной серной кислотой.

К о р р о з и я м е т а л л о в. Понятие коррозии. Химическая и электрохимическая коррозия и способы защиты металлов от коррозии.

Общие способы получения металлов. Металлы в природе. Основные способы получения металлов (пирометаллургия, гидрометаллургия, электрометаллургия).

Электролиз как окислительно-восстановительный процесс. Электролиз расплавов электролитов. Электролиз растворов электролитов с инертными и активными электродами. Использование электролиза в промышленности.

Металлы главных подгрупп. Щелочные металлы, общая характеристика на основе положения в Периодической системе элементов Д.И. Менделеева и строения атомов. Получение, физические и химические свойства, применение щелочных металлов и их соединений. Бериллий, магний, щелочноземельные металлы, их общая характеристика на основе положения в Периодической системе элементов Д.И. Менделеева и строения атомов. Получение, физические и химические свойства, применение щелочноземельных металлов и их соединений. Алюминий, строение атома, физические и химические свойства, получение и применение.

Металлы побочных подгрупп. Характеристика металлов побочных подгрупп по их положению в Периодической системе Д.И. Менделеева и строению атомов.

Медь: физические и химические свойства, получение и применение. Важнейшие соединения меди.

Физические и химические свойства, получение и применение цинка. Характеристика важнейших соединений (оксида и гидроксида цинка).

Физические и химические свойства, получение и применение хрома. Характеристика важнейших соединений (оксида и гидроксида хрома (III), дихроматов и хроматов щелочных металлов). Особенности восстановления дихроматов в зависимости от среды растворов.

Физические и химические свойства, получение и применение марганца. Характеристика важнейших соединений: оксидов, гидроксидов, солей. Особенности восстановления перманганатов в зависимости от среды растворов.

Неметаллов в Периодической системе Д.И. Менделеева. Особенности строения атомов и кристаллов. Аллотропия.

Благородные газы.

Окислительные и восстановительные свойства неметаллов. Общая характеристика водородных соединений неметаллов. Общая характеристика оксидов и гидроксидов неметаллов.

Галогены. Строение атомов галогенов, их сравнительная характеристика. Свойства простых веществ, образованных галогенами. Окислительные свойства галогенов. Галогеноводороды, их свойства, сравнительная характеристика. Хлор и его соединения,

нахождение в природе, получение, свойства, применение. Хлороводород и соляная кислота. Хлориды.

Халькогены. Нахождение кислорода и серы в природе, получение их в промышленности и лаборатории. Свойства кислорода и серы: аллотропия и физические свойства аллотропных модификаций; окислительные свойства кислорода и серы в реакциях с простыми веществами. Восстановительные свойства серы. Окисление кислородом сложных веществ. Окислительные свойства озона. Применение кислорода и озона. Применение серы. Сероводород, нахождение в природе, получение, строение молекулы и свойства: физические и химические. Сероводородная кислота и сульфиды. Оксид серы (IV), его свойства. Сернистая кислота и ее соли. Серная кислота: физические и химические и обменные). Применение серной кислоты. Соли серной кислоты.

Азот. Нахождение в природе, получение. Строение молекулы. Окислительные и восстановительные свойства азота. Применение азота. Аммиак: получение, строение молекулы, свойства (основные, реакции комплексообразования, восстановительные, окислительные, реакции с органическими веществами и углекислым газом). Соли аммония и их применение. Оксиды азота, их строение и свойства. Азотная кислота: получение и свойства. Нитраты, их термическое разложение.

Фосфор. Нахождение в природе, получение. Аллотропия и физические свойства модификаций. Окислительные свойства (реакции с металлами) и восстановительные свойства фосфора (реакции с галогенами, кислородом, концентрированной серной и азотной кислотами). Оксид фосфора (V). Фосфорные кислоты и их соли.

Углерод. Нахождение в природе. Аллотропия и физические свойства модификаций (повторение). Химические свойства углерода: восстановительные (взаимодействие с галогенами, кислородом, серой, азотом, водой, оксидом меди (II), концентрированной серной и азотной кислотами) и окислительные (взаимодействие с металлами, водородом, кремнием, бором). Получение, свойства и применение оксидов углерода. Угольная кислота и ее соли.

Кремний. Нахождение кремния в природе и его получение. Аллотропия и свойства аллотропных модификаций кремния. Восстановительные (реакции с галогенами, кислородом, растворами щелочей) и окислительные свойства кремния (реакции с металлами). Применение кремния. Оксид кремния, кремниевая кислота и ее соли.

К и с л о т ы о р г а н и ч е с к и е и н е о р г а н и ч е с к и е. Состав, классификация и номенклатура неорганических и органических кислот. Получение важнейших органических и неорганических кислот. Химические свойства (реакции с металлами, с оксидами металлов, с основаниями, с солями, со спиртами). Окислительновосстановительные свойства кислот. Особенности свойств серной и азотной кислот.

Основания органических и органических оснований. Основные способы получения гидроксидов металлов (щелочей – реакциями металлов и их оксидов с водой, нерастворимых оснований – реакцией обмена). Получение аммиака и аминов. Химические свойства оснований: щелочей (реакции с кислотами, кислотными оксидами, растворами солей, с простыми веществами, с галоидопроизводными углеводородов, фенолом, жирами); нерастворимых оснований (реакции с кислотами, реакции разложения).

Амфотерные органические и неорганические соединения. Способы получения амфотерных соединений (амфотерных оснований и аминокислот), их химические свойства.

Генетическая связь между классами органически х и неорганических соединений. Понятия «генетическая связь» и «генетический ряд». Основные признаки генетического ряда. Генетические ряды металлов (на примере кальция и железа) и неметаллов (на примере серы и кремния) и переходного

элемента (на примере алюминия). Генетические ряды и генетическая связь в органической химии. Единство мира веществ.

Расчетные задачи. Вычисление массы или объема продуктов реакции по известной массе или объему исходного вещества, содержащего примеси. Вычисление массы исходного вещества, если известен практический выход и массовая его доля от теоретически возможного. Вычисления по химическим уравнениям реакций, если одно из реагирующих веществ дано в избытке. Определение молекулярной формулы вещества по массовым долям элементов. Определение молекулярной формулы газообразного вещества по известной относительной плотности и массовым долям элементов. Нахождение молекулярной формулы вешества ПО массе (объему) продуктов сгорания. Комбинированные задачи.

Лемонстрации. Коллекция «Классификация неорганических веществ». Получение комплексных органических и неорганических соединений. Демонстрация сухих кристаллогидратов. Коллекция «Классификация органических веществ». Модели кристаллических решеток металлов. Коллекция металлов с разными физическими свойствами. Взаимодействие металлов с неметаллами (цинка с серой, алюминия с иодом), с растворами кислот и щелочей. Горение металлов (цинка, железа, магния в кислороде). Взаимодействие азотной и концентрированной серной кислот с медью. Коррозия металлов в различных условиях и методы защиты от нее. Коллекция руд. Восстановление меди из оксида меди (II) углем и водородом. Алюминотермия. Взаимодействие сульфата меди (II) с железом. Составление гальванических элементов. Электролиз раствора сульфата меди (II). Образцы щелочных металлов. Реакция окрашивания пламени солями щелочных металлов. Взаимодействие лития и натрия с водой. Образцы металлов IIA группы. Взаимодействие кальция с водой. Горение магния в воде и твердом углекислом газе. Качественные реакции на катионы магния, кальция, бария. Переход хромата в дихромат и обратно. Получение и исследование свойств гидроксида хрома (III). Окислительные свойства дихромата калия. Модели кристаллических решеток иода, алмаза, графита. Взрыв смеси водорода с кислородом (гремучего газа). Горение серы, фосфора и угля в кислороде. Обесцвечивание бромной (иодной) воды этиленом. Галогены (простые вещества). Окислительные свойства хлорной воды. Получение соляной кислоты и ее свойства. Получение кислорода. Получение оксидов горением простых и сложных веществ. Взаимодействие серы с металлами (алюминием, цинком, железом). Получение сероводорода и сероводородной кислоты, доказательство наличия сульфид-иона в растворе. Свойства серной кислоты. Получение и разложение хлорида аммония. Получение оксида азота (IV) реакцией взаимодействия меди с концентрированной азотной кислотой. Взаимодействие оксида азота (IV) с водой. Разложение нитрата натрия, горение черного пороха. Горение фосфора, растворение оксида фосфора (V) в воде и исследование полученного раствора индикатором. Коллекция природных соединений углерода. Кристаллические графита. Адсорбция решетки алмаза и оксида азота (IV) активированным углем. Переход карбоната в гидрокарбонат и обратно. Коллекции природных силикатов и продукции силикатной промышленности. Взаимодействие концентрированных азотной и серной кислот, а также разбавленной азотной кислоты с медью. Взаимодействие аммиака с хлороводородом и водой. Взаимодействие раствора гидроксида натрия с амфотерным гидроксидом цинка или алюминия.

Лабораторные опыты. 7.Ознакомление с образцами представителей разных классов неорганических веществ. 8. Ознакомление с образцами представителей разных классов органических веществ. 9. Ознакомление с коллекцией руд. 10. Сравнение свойств кремниевой, фосфорной, серной и хлорной кислот; сернистой и серной кислот; азотистой и азотной кислот. 11. Свойства соляной, серной (разбавленной) и уксусной кислот. 12. Взаимодействие гидроксида натрия с солями (сульфатом меди (II) и хлоридом

аммония). 13. Разложение гидроксида меди (II). Получение гидроксида алюминия и изучение его амфотерных свойств.

Практическая работа № 3. Получение газов и изучение их свойств.

Практическая работа № 4. Решение экспериментальных задач по органической химии.

Практическая работа № 5. Решение экспериментальных задач по неорганической химии.

Практическая работа № 6. Сравнение свойств неорганических и органических соединений.

Практическая работа № 7. Генетическая связь между классами неорганических и органических веществ.

Химия и общество

Хими я и производства. Химическая промышленность. Химическая технология. Сырье для химической промышленности. Вода в химической промышленности. Энергия для химического производства. Научные принципы химического производства. Защита окружающей среды и охрана труда при химическом производстве. Производство аммиака и метанола в сравнении. Биотехнология. Нанотехнология.

Химия и сельское хозяйство. Основные направления химизации сельского хозяйства. Удобрения и их классификация. Химическая мелиорация почв. Пестициды и их классификация. Химизация животноводства.

Химия и проблемы охраны окружающей среды. Основные факторы химического загрязнения окружающей среды. Охрана атмосферы, водных ресурсов, земельных ресурсов от химического загрязнения.

Химия и повседневная жизнь человека. Лекарства. Моющие и чистящие средства. Химические средства гигиены и косметики. Международная символика по уходу за текстильными изделиями. Маркировка на упаковках пищевых продуктов и информация, которую она символизирует.

Лабораторные опыты. 14. Ознакомление с коллекцией удобрений и пестицидов. 15. Ознакомление с образцами средств бытовой химии и лекарственных препаратов, изучение инструкций к ним по правильному и безопасному применению.

Демонстрации. Видеофрагменты по производству аммиака и метанола. Слайды и другие видеоматериалы, иллюстрирующие био- и нанотехнологии. Коллекция «Минеральные удобрения». Коллекция пестицидов. Видеофрагменты по химической мелиорации почв и химизации животноводства. Видеофрагменты и слайды экологической тематики. Домашняя, автомобильная аптечки и аптечка химического кабинета. Коллекция моющих и чистящих средств.

Тематическое планирование

No	Тема	Количество	Формы		Виды,	формы	И	Содержание	
		часов	контроля		содержан	ние		воспитательного	
			1		деятельн	ости		потенциала темы	
					учащихс	R			
			к/р	п/р					
1	Строени	9	1		Работая	в групп	ax	Воспитывается	
	е атома				(парах),			уважение	К
					анализи	руют		исторической	
					учетный	й материа	ıл,	личности,	
					раскрыв	вают смы	сл	активизируется	
					теории			познавательная	
					химичес	ского		деятельность	

			1	1		
					строения,	учащихся,
					формирование	привлекается
					уважения к	внимание
					заслугам	школьников к
					отечественных	ценностному
					ученых	аспекту учебного
						материала,
						вырабатывается
						личное отношение
						учащихся к
						образованию как
						ценности
2	Строение	15	1		организация их	высказывания
	вещества.				работы с	учащимися своего
	Дисперсные				текстами,	мнения по ее
	системы				заданиями	поводу и уважение
	CHCICMBI				повышенного	к чужому мнению
						привлечение
					уровня, парные и	*
					групповые формы	внимания учащихся
					работы,	к ценностному
					обсуждение	аспекту изучаемых
					информации:	на уроках явлений
					инициирование ее	
	**				обсуждения	
3	Химические	21	1	2	организация их	Совершенствование
	реакции				работы с	навыков
					текстами,	самостоятельного
					заданиями	решения проблемы,
					повышенного	совершенствование
					уровня,	практических
					исследовательские	навыков,
					и практические	уважительного
					формы работы	отношения к чужим
						идеям,
						аргументирования
						и отстаивания
						своей точки зрения
4	Вещества и их	44	2	5	организация их	высказывания
	свойства				работы с	учащимися своего
					текстами,	мнения по ее
					заданиями	поводу и уважение
					повышенного	к чужому мнению
					уровня,	привлечение
					обсуждение	внимания учащихся
					информации:	к ценностному
					инициирование ее	аспекту изучаемых
					обсуждения	на уроках явлений
5	Химия и	9			· ·	
)		<i>7</i> 			исследовательской	совершенствование
	общество				деятельности	навыков
					учащихся в	самостоятельного
					рамках	решения
			<u> </u>		реализации ими	теоретической

			групповых	проблемы,
			исследовательских	генерирования и
			мини-проектов	оформления
				собственных идей,
				уважительного
				отношения к чужим
				идеям, публичного
				выступления перед
				аудиторией,
				аргументирования
				и отстаивания
				своей точки зрения
6	Повторение	4		
	основных			
	вопросов курса			
	«Общая			
	«RИМИХ			
	Всего	102		

Критерии оценки уровня знаний учащихся

Результаты обучения химии должны соответствовать общим задачам предмета и требованиям к его усвоению.

Результаты обучения оцениваются по пятибалльной системе. При оценке учитываются следующие качественные показатели ответов:

- глубина (соответствие изученным теоретическим обобщениям);
- •осознанность (соответствие требуемым в программе умениям применять полученную информацию);
- •полнота (соответствие объему программы и информации учебника).

При оценке учитываются число и характер ошибок (существенных или несущественных).

Существенные ошибки связаны с недостаточной глубиной и осознанностью ответа (например, ученик неправильно указал основные признаки понятий, явлений, характерные свойства веществ, неправильно сформулировал закон, правило и т.д. или ученик не смог применить теоретические знания для объяснения и предсказания явлений, установления причинно-следственных связей, сравнения и классификации явлений и т. п.).

Несущественные ошибки определяются неполнотой ответа (например, упущение из вида какого-либо нехарактерного факта при описании вещества, процесса). К ним можно отнести оговорки, описки, допущенные по невнимательности (например, на два и более уравнений реакций в полном ионном виде допущена одна ошибка в обозначении заряда иона).

Результаты обучения проверяются в процессе устных и письменных ответов учащихся, а также при выполнении ими химического эксперимента.

Оценка устного ответа

- ответ полный и правильный на основании изученных теорий;
- материал изложен в определенной логической последовательности, литературным языком;
- ответ самостоятельный.

Оценка «4»:

- ответ полный и правильный на основании изученных теорий;
- материал изложен в определенной логической последовательности, при этом допущены две-три несущественные ошибки, исправленные по требованию учителя.

Оценка «3»:

• ответ полный, но при этом допущена существенная ошибка или ответ неполный, несвязный.

Оценка «2»:

• при ответе обнаружено непонимание учащимся основного содержания учебного материала или допущены существенные ошибки, которые учащийся не может исправить при наводящих вопросах учителя.

Оценка письменных работ

Оценка экспериментальных умений

Оценка ставится на основании наблюдения за учащимися и письменного отчета за работу.

Оценка «5»:

- работа выполнена полностью и правильно, сделаны правильные наблюдения и выводы;
- эксперимент осуществлен по плану с учетом техники безопасности и правил работы с веществами и оборудованием;
- проявлены организационно-трудовые умения (поддерживаются чистота рабочего места и порядок на столе, экономно используются реактивы).

Оценка «4»:

• работа выполнена правильно, сделаны правильные наблюдения и выводы, но при этом эксперимент проведен не полностью или допущены несущественные ошибки в работе с веществами и оборудованием

Оценка «3»:

• работа выполнена правильно не менее чем наполовину или допущена существенная ошибка в ходе эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с веществами и оборудованием, которая исправляется по требованию учителя.

Оценка «2»:

• допущены две (и более) существенные ошибки в ходе эксперимента, в объяснении, в оформлении работы, в соблюдении правил техники безопасности при работе с веществами и оборудованием, которые учащийся не может исправить даже по требованию учителя.

Оценка умений решать экспериментальные задачи

Оценка «5»:

- план решения составлен правильно;
- правильно осуществлен подбор химических реактивов и оборудования;

• дано полное объяснение и сделаны выводы.

Оценка «4»:

- план решения составлен правильно;
- правильно осуществлен подбор химических реактивом и оборудования, при этом допущено не более двух несущественных ошибок в объяснении и выводах.

Оценка «3»:

- план решения составлен правильно;
- •правильно осуществлен подбор химических реактивов и оборудования, но допущена существенная ошибка в объяснении и выводах.

Оценка «2»:

• допущены две (и более) ошибки в плане решения, в подборе химических реактивов и оборудования, в объяснении и выводах.

Оценка умений решать расчетные задачи

Оценка «5»:

• в логическом рассуждении и решении нет ошибок, задача решена рациональным способом.

Оценка «4»:

•в логическом рассуждении и решении нет существенных ошибок, но задача решена нерациональным способом или допущено не более двух несущественных ошибок.

Оценка «3»:

•в логическом рассуждении нет существенных ошибок, но допущена существенная ошибка в математических расчетах.

Оценка «2»:

•имеются существенные ошибки в логическом рассуждении и в решении

Описание учебно-методического и материально-технического обеспечения образовательного процесса

-УМК:

Габриелян О.С., Маскаев Ф.Н. и др. Химия. 10 класс. Профильный уровень: учебник для общеобразовательных учреждений /.— М.: Дрофа

Габриелян О.С., Лысова Г.Г. и др. Химия. 11 класс. Профильный уровень: учебник для общеобразовательных учреждений /.— М.: Дрофа

Габриелян О.С., А.В. Яшукова. Химия.10 класс: рабочая тетрадь к учебнику О.С. Габриеляна «Химия. 10 класс. Базовый уровень. -М.: Дрофа

-Методические пособия

Габриелян О.С., Остроумов И.Г. Методическое пособие для учителя: Настольная книга учителя. Химия.10 класс/ М.:Дрофа,2006

Рябов М.А. Учебно-методический комплект. Сборник заданий и упражнений по химии к учебнику О.С.Габриеляна и др. «химия.10 класс». -М.: Дрофа. Издательство «Экзамен»,2008

Суровцева. Р. П. Тесты по химии.10 класс: Учебно-методическое пособие.- М.: Дрофа, 2000

Хомченко И.Г.. Решение задач по химии. 8-11 (решения, методики, советы). -М.: ООО «Издательство НОВАЯ ВОЛНА».2005

-Дидактический материал

Габриелян О.С., Остроумов И.Г. Органическая химия в тестах, задачах, упражнениях. 10 кл. – М.: Дрофа, 2005.

Журин А.А.: Задания и упражнения по химии. Дидактические материалы для учащихся 10-11 классов. - М.: Школьная пресса, 2005

Кузнецова Н.Е., Лёвкин А.Н.Задачник по химии для учащихся 10 класса общеобразовательных учреждений: Профильный уровень. – М. :Вентана-Граф, 2007/

Тесты по химии: 10-й кл.: к учебнику О.С.Габриеляна и др. «Химия. 10 класс» / М.А.Рябов, Р.В. Линько, Е.Ю.Невская. – М.: «Экзамен», 2006. – 158 с.

-Электронные ресурсы

-www.alchimic.ru -www.химик.ru

http://www.mon.gov.ru Министерство образования и науки

http://www.fipi.ru Портал ФИПИ – Федеральный институт педагогических измерений

http://www.ege.edu.ru Портал ЕГЭ (информационной поддержки ЕГЭ)

http://www.probaege.edu.ru Портал Единый экзамен

http://edu.ru/index.php Федеральный портал «Российское образование»

http://www.infomarker.ru/top8.html RUSTEST.RU - федеральный центр тестирования.

http://www.pedsovet.orgВсероссийский Интернет-Педсовет.

http://ru.wikipedia.org/ - свободная энциклопедия;

http://bio.1september.ru/http://him.1september.ru/ электронная версия газеты «Химия»;

портал (Методические разработки для уроков химии, презентации);

http://www.uroki.net – разработки уроков, сценарии, конспекты, поурочное планирование;

http://www.it-n.ru – сеть творческих учителей;

http://festival.1september.ru/ - уроки и презентации;

http://www.chem.msu.su/rus/elibrary/ - электронная библиотека учебных материалов по химии

http://chemistry-chemists.com/Химия и Химики - журнал Химиков-Энтузиастов

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 226532536287478012381166593962040472429943183945 Владелец Неробова Мария Сергеевна

Действителен С 17.08.2022 по 17.08.2023