Пояснительная записка Данная программа ориентирована на преподавание алгебры по учебникам Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, И.Е. Феоктистова «Алгебра. 8 класс», «Алгебра. 9 класс» (М. Мнемозина) для классов с углублённым изучением математики и отражает концепцию преподавания этого предмета авторского коллектива под руководством Ю.Н. Макарычева. В программе представлена как инвариантная (обязательная) часть учебного курса, так и её вариативная часть. В ней предложен собственный подход в структурировании учебного материала, в определении последовательности изучения этого материала, а также путей формирования системы знаний, умений и способов деятельности, развития и социализации учащихся. При этом программа позволяет сохранить единое образовательное пространство, подчёркивая и раскрывая творческую составляющую авторов УМК. Предоставляя широкие возможности для реализации авторского подхода к построению учебного курса. Материал курса полностью соответствует примерной программе основного общего образования по математике, включая в себя ряд дополнительных вопросов, связанных по большей части с развивающими упражнениями. В этом заключается отличие данной программы от уже существующих учебных программ. Кроме того, в учебный курс органично вплетена стохастическая линия, усилены теоретико – множественные подходы к изложению некоторых вопросов, более полно раскрыта историко – культурная линия. Полностью соответствуя федеральному компоненту государственного стандарта общего образования, материал учебного курса отвечает возрастным особенностям подросткового периода, когда ребёнок устремлён к реальной практической деятельности, познанию мира, самопознанию и самоопределению. Курс ориентирован не только на знаниевый, но и в первую очередь на деятельностный компонент образования. Это позволяет повысить мотивацию обучения, в наибольшей степени реализовать способности, возможности, потребности и интересы ребёнка. Вообще специфика педагогических целей основной школы связана не только с учебными успехами, но и в большей степени с личностным развитием ребёнка. Программа реализует следующие основные цели: формирование целостного представления о мире, основанного на приобретённых знаниях, умениях, навыках и способах деятельности; приобретение опыта разнообразной деятельности(индивидуальной и коллективной), опыта познания и самопознания; подготовка к осуществлению осознанного выбора индивидуальной образовательной или профессиональной траектории. Одним из базовых требований к содержанию образования на этой ступени является достижение выпускниками уровня функциональной грамотности (математической, естественно – научной и социально – культурной), необходимой в современном обществе. В данном учебном курсе у учащихся целенаправленно и планомерно формируется функциональная грамотность во всех её направлениях. Одной из важнейших задач основной школы является подготовка обучающихся к осознанному и ответственному выбору жизненного и профессионального пути. Эта задача решается в данной учебной программе последовательной индивидуализацией обучения, расширением и углублением содержания образования в рамках предпрофильной подготовки. Учитывая потребность в раннем выявлении учащихся, желающих и способных изучать математику на более высоком уровне, углубленное изучение математики целесообразно начинать не с 10-го, и даже не с 9-го класса, а именно с 7 – 8-го. В этом состоит главная идея концепции Ю.Н. Макарычева: дать учащимся возможность ближе увидеть тот профиль, который они могут выбрать в 10-м классе, познакомиться с ним заранее. Данная программа рассчитана на 5 уроков алгебры в неделю при шестидневной учебной неделе. В соответствии с учебным планом на математику в 8 – 9 классах отводится 5 часов в неделю (федеральный компонент: 3 часа - алгебра, 2 часа – геометрия). Региональный и школьный компонент в каждом классе составляет 5 часов в неделю. Из этих часов добавляется 2 часа на алгебру и 1 час на геометрию. Всего в год в каждом классе 170 часов. Планируемые результаты Программа обеспечивает достижение следующих результатов освоения образовательной программы основного общего образования: Личностные результаты: сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе ориентировки в мире профессий и профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов; сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики; сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебноисследовательской, творческой и других видах деятельности; умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры; представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта; креативность мышления, инициатива, находчивость, активность при решении алгебраических задач; умение контролировать процесс и результат учебной математической деятельности; способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений. Метапредметные результаты: умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы; умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения; осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей; умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы; умение создавать, применять и преобразовывать знаковосимволические средства, модели и схемы для решения учебных и познавательных задач; умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение; сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности); первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов; умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни; умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации; умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации; умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки; умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач; понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом; умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем; умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера. Предметные результаты: Выпускник научится в 8-9 классах (для использования в повседневной жизни и обеспечения возможности успешного продолжения образования на базовом уровне) Элементы теории множеств и математической логики Оперировать на базовом уровне понятиями: множество, элемент множества, подмножество, принадлежность; задавать множества перечислением их элементов; находить пересечение, объединение, подмножество в простейших ситуациях; оперировать на базовом уровне понятиями: определение, аксиома, теорема, доказательство; приводить примеры и контрпримеры для подтверждения своих высказываний. В повседневной жизни и при изучении других предметов: использовать графическое представление множеств для описания реальных процессов и явлений, при решении задач других учебных предметов. Числа Оперировать на базовом уровне понятиями: натуральное число, целое число, обыкновенная дробь, десятичная дробь, смешанная дробь, рациональное число, арифметический квадратный корень; использовать свойства чисел и правила действий при выполнении вычислений; использовать признаки делимости на 2, 5, 3, 9, 10 при выполнении вычислений и решении несложных задач; выполнять округление рациональных чисел в соответствии с правилами; оценивать значение квадратного корня из положительного целого числа; распознавать рациональные и иррациональные числа; сравнивать числа. В повседневной жизни и при изучении других предметов: оценивать результаты вычислений при решении практических задач; выполнять сравнение чисел в реальных ситуациях; составлять числовые выражения при решении практических задач и задач из других учебных предметов. Тождественные преобразования Выполнять несложные преобразования для вычисления значений числовых выражений, содержащих степени с натуральным показателем, степени с целым отрицательным показателем; выполнять несложные преобразования целых выражений: раскрывать скобки, приводить подобные слагаемые; использовать формулы сокращенного умножения (квадрат суммы, квадрат разности, разность квадратов) для упрощения вычислений значений выражений; выполнять несложные преобразования дробно-линейных выражений и выражений с квадратными корнями. В повседневной жизни и при изучении других предметов: понимать смысл записи числа в стандартном виде; оперировать на базовом уровне понятием «стандартная запись числа». Уравнения и неравенства Оперировать на базовом уровне понятиями: равенство, числовое равенство, уравнение, корень уравнения, решение уравнения, числовое неравенство, неравенство, решение неравенства; проверять справедливость числовых равенств и неравенств; решать линейные неравенства и несложные неравенства, сводящиеся к линейным; решать системы несложных линейных уравнений, неравенств; проверять, является ли данное число решением уравнения (неравенства); решать квадратные уравнения по формуле корней квадратного уравнения; изображать решения неравенств и их систем на числовой прямой. В повседневной жизни и при изучении других предметов: составлять и решать линейные уравнения при решении задач, возникающих в других учебных предметах. Функции Находить значение функции по заданному значению аргумента; находить значение аргумента по заданному значению функции в несложных ситуациях; определять положение точки по ее координатам, координаты точки по ее положению на координатной плоскости; по графику находить область определения, множество значений, нули функции, промежутки знакопостоянства, промежутки возрастания и убывания, наибольшее и наименьшее значения функции; строить график линейной функции; проверять, является ли данный график графиком заданной функции (линейной, квадратичной, обратной пропорциональности); определять приближенные значения координат точки пересечения графиков функций; оперировать на базовом уровне понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия; решать задачи на прогрессии, в которых ответ может быть получен непосредственным подсчетом без применения формул. В повседневной жизни и при изучении других предметов: использовать графики реальных процессов и зависимостей для определения их свойств (наибольшие и наименьшие значения, промежутки возрастания и убывания, области положительных и отрицательных значений и т.п.); использовать свойства линейной функции и ее график при решении задач из других учебных предметов. Статистика и теория вероятностей Иметь представление о статистических характеристиках, вероятности случайного события, комбинаторных задачах; решать простейшие комбинаторные задачи методом прямого и организованного перебора; представлять данные в виде таблиц, диаграмм, графиков; читать информацию, представленную в виде таблицы, диаграммы, графика; определять основные статистические характеристики числовых наборов; оценивать вероятность события в простейших случаях; иметь представление о роли закона больших чисел в массовых явлениях. В повседневной жизни и при изучении других предметов: оценивать количество возможных вариантов методом перебора; иметь представление о роли практически достоверных и маловероятных событий; сравнивать основные статистические характеристики, полученные в процессе решения прикладной задачи, изучения реального явления; оценивать вероятность реальных событий и явлений в несложных ситуациях. Текстовые задачи Решать несложные сюжетные задачи разных типов на все арифметические действия; строить модель условия задачи (в виде таблицы, схемы, рисунка или уравнения), в которой даны значения двух из трех взаимосвязанных величин, с целью поиска решения задачи; осуществлять способ поиска решения задачи, в котором рассуждение строится от условия к требованию или от требования к условию; составлять план решения задачи; выделять этапы решения задачи; интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи; знать различие скоростей объекта в стоячей воде, против течения и по течению реки; решать задачи на нахождение части числа и числа по его части; решать задачи разных типов (на работу, на покупки, на движение), связывающих три величины, выделять эти величины и отношения между ними; находить процент от числа, число по проценту от него, находить процентное снижение или процентное повышение величины; решать несложные логические задачи методом рассуждений. В повседневной жизни и при изучении других предметов: выдвигать гипотезы о возможных предельных значениях искомых в задаче величин (делать прикидку). Выпускник получит возможность научиться в 8-9 классах для обеспечения возможности успешного продолжения образования на базовом и углубленном уровнях Элементы теории множеств и математической логики Оперировать понятиями: определение, теорема, аксиома, множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств; изображать множества и отношение множеств с помощью кругов Эйлера; определять принадлежность элемента множеству, объединению и пересечению множеств; задавать множество с помощью перечисления элементов, словесного описания; оперировать понятиями: высказывание, истинность и ложность высказывания, отрицание высказываний, операции над высказываниями: и, или, не, условные высказывания (импликации); строить высказывания, отрицания высказываний. В повседневной жизни и при изучении других предметов: строить цепочки умозаключений на основе использования правил логики; использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений. Числа Оперировать понятиями: множество натуральных чисел, множество целых чисел, множество рациональных чисел, иррациональное число, квадратный корень, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел; понимать и объяснять смысл позиционной записи натурального числа; выполнять вычисления, в том числе с использованием приемов рациональных вычислений; выполнять округление рациональных чисел с заданной точностью; сравнивать рациональные и иррациональные числа; представлять рациональное число в виде десятичной дроби упорядочивать числа, записанные в виде обыкновенной и десятичной дроби; находить НОД и НОК чисел и использовать их при решении задач. В повседневной жизни и при изучении других предметов: применять правила приближенных вычислений при решении практических задач и решении задач других учебных предметов; выполнять сравнение результатов вычислений при решении практических задач, в том числе приближенных вычислений; составлять и оценивать числовые выражения при решении практических задач и задач из других учебных предметов; записывать и округлять числовые значения реальных величин с использованием разных систем измерения. Тождественные преобразования Оперировать понятиями степени с натуральным показателем, степени с целым отрицательным показателем; выполнять преобразования целых выражений: действия с одночленами (сложение, вычитание, умножение), действия с многочленами (сложение, вычитание, умножение); выполнять разложение многочленов на множители одним из способов: вынесение за скобку, группировка, использование формул сокращенного умножения; выделять квадрат суммы и разности одночленов; раскладывать на множители квадратный трехчлен; выполнять преобразования выражений, содержащих степени с целыми отрицательными показателями, переходить от записи в виде степени с целым отрицательным показателем к записи в виде дроби; выполнять преобразования дробно-рациональных выражений: сокращение дробей, приведение алгебраических дробей к общему знаменателю, сложение, умножение, деление алгебраических дробей, возведение алгебраической дроби в натуральную и целую отрицательную степень; выполнять преобразования выражений, содержащих квадратные корни; выделять квадрат суммы или разности двучлена в выражениях, содержащих квадратные корни; выполнять преобразования выражений, содержащих модуль. В повседневной жизни и при изучении других предметов: выполнять преобразования и действия с числами, записанными в стандартном виде; выполнять преобразования алгебраических выражений при решении задач других учебных предметов. Уравнения и неравенства Оперировать понятиями: уравнение, неравенство, корень уравнения, решение неравенства, равносильные уравнения, область определения уравнения (неравенства, системы уравнений или неравенств); решать линейные уравнения и уравнения, сводимые к линейным с помощью тождественных преобразований; решать квадратные уравнения и уравнения, сводимые к квадратным с помощью тождественных преобразований; решать дробно-линейные уравнения; решать простейшие иррациональные уравнения вида f x a , f x g x ; n решать уравнения вида x a ; решать уравнения способом разложения на множители и замены переменной; использовать метод интервалов для решения целых и дробно-рациональных неравенств; решать линейные уравнения и неравенства с параметрами; решать несложные квадратные уравнения с параметром; решать несложные системы линейных уравнений с параметрами; решать несложные уравнения в целых числах. В повседневной жизни и при изучении других предметов: составлять и решать линейные и квадратные уравнения, уравнения, к ним сводящиеся, системы линейных уравнений, неравенств при решении задач других учебных предметов; выполнять оценку правдоподобия результатов, получаемых при решении линейных и квадратных уравнений и систем линейных уравнений и неравенств при решении задач других учебных предметов; выбирать соответствующие уравнения, неравенства или их системы для составления математической модели заданной реальной ситуации или прикладной задачи; уметь интерпретировать полученный при решении уравнения, неравенства или системы результат в контексте заданной реальной ситуации или прикладной задачи. Функции Оперировать понятиями: функциональная зависимость, функция, график функции, способы задания функции, аргумент и значение функции, область определения и множество значений функции, нули функции, промежутки знакопостоянства, монотонность функции, четность/нечетность функции; строить графики линейной, квадратичной функций, обратной пропорциональности, функции вида: y a k , y xb x ,y 3 x, y x ; на примере квадратичной функции, использовать преобразования графика функции y=f(x) для построения графиков функций y af kx b c ; составлять уравнения прямой по заданным условиям: проходящей через две точки с заданными координатами, проходящей через данную точку и параллельной данной прямой; исследовать функцию по ее графику; находить множество значений, нули, промежутки знакопостоянства, монотонности квадратичной функции; оперировать понятиями: последовательность, арифметическая прогрессия, геометрическая прогрессия; решать задачи на арифметическую и геометрическую прогрессию. В повседневной жизни и при изучении других предметов: иллюстрировать с помощью графика реальную зависимость или процесс по их характеристикам; использовать свойства и график квадратичной функции при решении задач из других учебных предметов. Текстовые задачи Решать простые и сложные задачи разных типов, а также задачи повышенной трудности; использовать разные краткие записи как модели текстов сложных задач для построения поисковой схемы и решения задач; различать модель текста и модель решения задачи, конструировать к одной модели решения несложной задачи разные модели текста задачи; знать и применять оба способа поиска решения задач (от требования к условию и от условия к требованию); моделировать рассуждения при поиске решения задач с помощью граф-схемы; выделять этапы решения задачи и содержание каждого этапа; уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно; анализировать затруднения при решении задач; выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные; интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи; анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях; исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета; решать разнообразные задачи «на части», решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби; осознавать и объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов; владеть основными методами решения задач на смеси, сплавы, концентрации; решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы; решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц; решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение; решать несложные задачи по математической статистике; овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях. В повседневной жизни и при изучении других предметов: выделять при решении задач характеристики рассматриваемой в задаче ситуации, отличные от реальных (те, от которых абстрагировались), конструировать новые ситуации с учетом этих характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат; решать задачи на движение по реке, рассматривая разные системы отсчета. Статистика и теория вероятностей Оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость; извлекать информацию, представленную в таблицах, на диаграммах, графиках; составлять таблицы, строить диаграммы и графики на основе данных; оперировать понятиями: факториал числа, перестановки и сочетания, треугольник Паскаля; применять правило произведения при решении комбинаторных задач; оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями; представлять информацию с помощью кругов Эйлера; решать задачи на вычисление вероятности с подсчетом количества вариантов с помощью комбинаторики. В повседневной жизни и при изучении других предметов: извлекать, интерпретировать и преобразовывать информацию, представленную в таблицах, на диаграммах, графиках, отражающую свойства и характеристики реальных процессов и явлений; определять статистические характеристики выборок по таблицам, диаграммам, графикам, выполнять сравнение в зависимости от цели решения задачи; оценивать вероятность реальных событий и явлений. История математики Характеризовать вклад выдающихся математиков в развитие математики и иных научных областей; понимать роль математики в развитии России. Методы математики Используя изученные методы, проводить доказательство, выполнять опровержение; выбирать изученные методы и их комбинации для решения математических задач; использовать математические знания для описания закономерностей в окружающей действительности и произведениях искусства; применять простейшие программные средства и электронно-коммуникационные системы при решении математических задач. Выпускник получит возможность научиться в 8-9 классах для успешного продолжения образования на углубленном уровне Элементы теории множеств и математической логики Свободно оперировать понятиями: множество, характеристики множества, элемент множества, пустое, конечное и бесконечное множество, подмножество, принадлежность, включение, равенство множеств, способы задание множества; задавать множества разными способами; проверять выполнение характеристического свойства множества; свободно оперировать понятиями: высказывание, истинность и ложность высказывания, сложные и простые высказывания, отрицание высказываний; истинность и ложность утверждения и его отрицания, операции над высказываниями: и, или, не; условные высказывания (импликации); строить высказывания с использованием законов алгебры высказываний. В повседневной жизни и при изучении других предметов: строить рассуждения на основе использования правил логики; использовать множества, операции с множествами, их графическое представление для описания реальных процессов и явлений, при решении задач других учебных предметов. Числа Свободно оперировать понятиями: натуральное число, множество натуральных чисел, целое число, множество целых чисел, обыкновенная дробь, десятичная дробь, смешанное число, рациональное число, множество рациональных чисел, иррациональное число, корень степени n, действительное число, множество действительных чисел, геометрическая интерпретация натуральных, целых, рациональных, действительных чисел; понимать и объяснять разницу между позиционной и непозиционной системами записи чисел; переводить числа из одной системы записи (системы счисления) в другую; доказывать и использовать признаки делимости на 2, 4, 8, 5, 3, 6, 9, 10, 11 суммы и произведения чисел при выполнении вычислений и решении задач; выполнять округление рациональных и иррациональных чисел с заданной точностью; сравнивать действительные числа разными способами; упорядочивать числа, записанные в виде обыкновенной и десятичной дроби, числа, записанные с использованием арифметического квадратного корня, корней степени больше 2; находить НОД и НОК чисел разными способами и использовать их при решении задач; выполнять вычисления и преобразования выражений, содержащих действительные числа, в том числе корни натуральных степеней. В повседневной жизни и при изучении других предметов: выполнять и объяснять результаты сравнения результатов вычислений при решении практических задач, в том числе приближенных вычислений, используя разные способы сравнений; записывать, сравнивать, округлять числовые данные реальных величин с использованием разных систем измерения; составлять и оценивать разными способами числовые выражения при решении практических задач и задач из других учебных предметов. Тождественные преобразования Свободно оперировать понятиями степени с целым и дробным показателем; выполнять доказательство свойств степени с целыми и дробными показателями; оперировать понятиями «одночлен», «многочлен», «многочлен с одной переменной», «многочлен с несколькими переменными», коэффициенты многочлена, «стандартная запись многочлена», степень одночлена и многочлена; свободно владеть приемами преобразования целых и дробно-рациональных выражений; выполнять разложение многочленов на множители разными способами, с использованием комбинаций различных приемов; использовать теорему Виета и теорему, обратную теореме Виета, для поиска корней квадратного трехчлена и для решения задач, в том числе задач с параметрами на основе квадратного трехчлена; выполнять деление многочлена на многочлен с остатком; доказывать свойства квадратных корней и корней степени n; выполнять преобразования выражений, содержащих квадратные корни, корни степени n; свободно оперировать понятиями «тождество», «тождество на множестве», «тождественное преобразование»; выполнять различные преобразования выражений, содержащих модули. В повседневной жизни и при изучении других предметов: выполнять преобразования и действия с буквенными выражениями, числовые коэффициенты которых записаны в стандартном виде; выполнять преобразования рациональных выражений при решении задач других учебных предметов; выполнять проверку правдоподобия физических и химических формул на основе сравнения размерностей и валентностей. Уравнения и неравенства Свободно оперировать понятиями: уравнение, неравенство, равносильные уравнения и неравенства, уравнение, являющееся следствием другого уравнения, уравнения, равносильные на множестве, равносильные преобразования уравнений; решать разные виды уравнений и неравенств и их систем, в том числе некоторые уравнения 3 и 4 степеней, дробно-рациональные и иррациональные; знать теорему Виета для уравнений степени выше второй; понимать смысл теорем о равносильных и неравносильных преобразованиях уравнений и уметь их доказывать; владеть разными методами решения уравнений, неравенств и их систем, уметь выбирать метод решения и обосновывать свой выбор; использовать метод интервалов для решения неравенств, в том числе дробнорациональных и включающих в себя иррациональные выражения; решать алгебраические уравнения и неравенства и их системы с параметрами алгебраическим и графическим методами; владеть разными методами доказательства неравенств; решать уравнения в целых числах; изображать множества на плоскости, задаваемые уравнениями, неравенствами и их системами. В повседневной жизни и при изучении других предметов: составлять и решать уравнения, неравенства, их системы при решении задач других учебных предметов; выполнять оценку правдоподобия результатов, получаемых при решении различных уравнений, неравенств и их систем при решении задач других учебных предметов; составлять и решать уравнения и неравенства с параметрами при решении задач других учебных предметов; составлять уравнение, неравенство или их систему, описывающие реальную ситуацию или прикладную задачу, интерпретировать полученные результаты. Функции Свободно оперировать понятиями: зависимость, функциональная зависимость, зависимая и независимая переменные, функция, способы задания функции, аргумент и значение функции, область определения и множество значения функции, нули функции, промежутки знакопостоянства, монотонность функции, наибольшее и наименьшее значения, четность/нечетность функции, периодичность функции, график функции, вертикальная, горизонтальная, наклонная асимптоты; график зависимости, не являющейся функцией, строить графики функций: линейной, квадратичной, дробно-линейной, степенной при разных значениях показателя степени, y x ; использовать преобразования графика функции y f x для построения графиков функций y af kx b c ; анализировать свойства функций и вид графика в зависимости от параметров; свободно оперировать понятиями: последовательность, ограниченная последовательность, монотонно возрастающая (убывающая) последовательность, предел последовательности, арифметическая прогрессия, геометрическая прогрессия, характеристическое свойство арифметической (геометрической) прогрессии; использовать метод математической индукции для вывода формул, доказательства равенств и неравенств, решения задач на делимость; исследовать последовательности, заданные рекуррентно; решать комбинированные задачи на арифметическую и геометрическую прогрессии. В повседневной жизни и при изучении других предметов: конструировать и исследовать функции, соответствующие реальным процессам и явлениям, интерпретировать полученные результаты в соответствии со спецификой исследуемого процесса или явления; использовать графики зависимостей для исследования реальных процессов и явлений; конструировать и исследовать функции при решении задач других учебных предметов, интерпретировать полученные результаты в соответствии со спецификой учебного предмета. Статистика и теория вероятностей Свободно оперировать понятиями: столбчатые и круговые диаграммы, таблицы данных, среднее арифметическое, медиана, наибольшее и наименьшее значения выборки, размах выборки, дисперсия и стандартное отклонение, случайная изменчивость; выбирать наиболее удобный способ представления информации, адекватный ее свойствам и целям анализа; вычислять числовые характеристики выборки; свободно оперировать понятиями: факториал числа, перестановки, сочетания и размещения, треугольник Паскаля; свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы; свободно оперировать понятиями: случайный опыт, случайный выбор, испытание, элементарное случайное событие (исход), классическое определение вероятности случайного события, операции над случайными событиями, основные комбинаторные формулы; знать примеры случайных величин, и вычислять их статистические характеристики; использовать формулы комбинаторики при решении комбинаторных задач; решать задачи на вычисление вероятности в том числе с использованием формул. В повседневной жизни и при изучении других предметов: представлять информацию о реальных процессах и явлениях способом, адекватным ее свойствам и цели исследования; анализировать и сравнивать статистические характеристики выборок, полученных в процессе решения прикладной задачи, изучения реального явления, решения задачи из других учебных предметов; оценивать вероятность реальных событий и явлений в различных ситуациях. Текстовые задачи Решать простые и сложные задачи, а также задачи повышенной трудности и выделять их математическую основу; распознавать разные виды и типы задач; использовать разные краткие записи как модели текстов сложных задач и задач повышенной сложности для построения поисковой схемы и решения задач, выбирать оптимальную для рассматриваемой в задаче ситуации модель текста задачи; различать модель текста и модель решения задачи, конструировать к одной модели решения сложных задач разные модели текста задачи; знать и применять три способа поиска решения задач (от требования к условию и от условия к требованию, комбинированный); моделировать рассуждения при поиске решения задач с помощью граф-схемы; выделять этапы решения задачи и содержание каждого этапа; уметь выбирать оптимальный метод решения задачи и осознавать выбор метода, рассматривать различные методы, находить разные решения задачи, если возможно; анализировать затруднения при решении задач; выполнять различные преобразования предложенной задачи, конструировать новые задачи из данной, в том числе обратные; интерпретировать вычислительные результаты в задаче, исследовать полученное решение задачи; изменять условие задач (количественные или качественные данные), исследовать измененное преобразованное; анализировать всевозможные ситуации взаимного расположения двух объектов и изменение их характеристик при совместном движении (скорость, время, расстояние) при решении задач на движение двух объектов как в одном, так и в противоположных направлениях, конструировать новые ситуации на основе изменения условий задачи при движении по реке; исследовать всевозможные ситуации при решении задач на движение по реке, рассматривать разные системы отсчета; решать разнообразные задачи «на части»; решать и обосновывать свое решение задач (выделять математическую основу) на нахождение части числа и числа по его части на основе конкретного смысла дроби; объяснять идентичность задач разных типов, связывающих три величины (на работу, на покупки, на движение), выделять эти величины и отношения между ними, применять их при решении задач, конструировать собственные задач указанных типов; владеть основными методами решения задач на смеси, сплавы, концентрации, использовать их в новых ситуациях по отношению к изученным в процессе обучения; решать задачи на проценты, в том числе, сложные проценты с обоснованием, используя разные способы; решать логические задачи разными способами, в том числе, с двумя блоками и с тремя блоками данных с помощью таблиц; решать задачи по комбинаторике и теории вероятностей на основе использования изученных методов и обосновывать решение; решать несложные задачи по математической статистике; овладеть основными методами решения сюжетных задач: арифметический, алгебраический, перебор вариантов, геометрический, графический, применять их в новых по сравнению с изученными ситуациях. В повседневной жизни и при изучении других предметов: конструировать новые для данной задачи задачные ситуации с учетом реальных характеристик, в частности, при решении задач на концентрации, учитывать плотность вещества; решать и конструировать задачи на основе рассмотрения реальных ситуаций, в которых не требуется точный вычислительный результат; решать задачи на движение по реке, рассматривая разные системы отсчета; конструировать задачные ситуации, приближенные к реальной действительности. История математики Понимать математику как строго организованную систему научных знаний, в частности владеть представлениями об аксиоматическом построении геометрии и первичными представлениями о неевклидовых геометриях; рассматривать математику в контексте истории развития цивилизации и истории развития науки, понимать роль математики в развитии России. Методы математики Владеть знаниями о различных методах обоснования и опровержения математических утверждений и самостоятельно применять их; владеть навыками анализа условия задачи и определения подходящих для решения задач изученных методов или их комбинаций; характеризовать произведения искусства с учетом математических закономерностей в природе, использовать математические закономерности в самостоятельном творчестве. Содержание учебного предмета. 8 класс Арифметика Натуральные числа. Делимость натуральных чисел. Признание делимости на 2, 3, 4, 5, 9, 10, 11. Простые и составные числа. Основная теорема арифметики. Бесконечность множества простых чисел. Разложение натурального числа на простые множители. Наибольший общий делитель и наименьшее общее кратное. Алгоритм Евклида. Целые числа. Деление с остатком. Рациональные числа. Степень с целым показателем. Задача измерения величин. Единица измерения. Измерение отрезков: единичный отрезок, процесс измерения. Общая мера двух отрезков. Соизмеримость и несоизмеримость отрезков. Связь между соизмеримостью отрезков и отношением их длин. Несоизмеримость диагонали квадрата с его стороной. Представление рационального числа в виде бесконечной периодической десятичной дроби. Представление бесконечной периодической десятичной дроби в виде обыкновенной. Действительные числа. Бесконечная десятичная дробь как результат измерения отрезка. Действительные числа как бесконечные десятичные дроби. Периодические десятичные дроби. Примеры бесконечных непериодических десятичных дробей. Свойства множества действительных чисел. Решение уравнения х2 = 2 во множестве рациональных и во множестве действительных чисел. Арифметический квадратный корень. Понятие об иррациональном числе. Иррациональность числа 2 . Десятичное приближение иррациональных чисел. Нахождение приближённого значения корня с помощью калькулятора. Стандартный вид числа. Измерения, приближения, оценки. Алгебра Алгебраические выражения. Свойства степеней с целым показателем. Теорема Виета. Разложение квадратного трёхчлена на линейные множители. Алгебраическая дробь. Сокращение дробей. Действия с алгебраическими дробями. Представление дроби в виде суммы дробей с использованием метода неопределённых коэффициентов. Рациональные выражения и их преобразования. Свойства квадратных корней и их применение в вычислениях. Уравнения и неравенства. Квадратное уравнение: формула корней квадратного уравнения. Решение рациональных уравнений. Примеры решения уравнений высших степеней; методы замены переменной, разложение на множители. Уравнение с двумя переменными. Примеры решения нелинейных систем. Примеры решения нелинейных уравнений в целых числах. Неравенства с одной переменной. Решение неравенств. Линейные неравенства с одной переменной и их системы. Квадратные неравенства. Дробно – рациональные неравенства. Неравенства, содержащие переменную под знаком модуля. Числовые неравенства и их свойства. Доказательство числовых и алгебраических неравенств. Переход от словесной формулировки соотношений между величинами к алгебраической и обратно. Решение текстовых задач алгебраическим способом. Числовые функции. Область определения и область значений функции. Чтение графиков функций. Преобразование графиков функций6 растяжение, сжатие, параллельный перенос вдоль осей координат. График функции y x . Дробно – линейная функция и её график. Использование графиков функций для решения уравнений и систем. Координаты. Числовые промежутки: интервал, отрезок, луч. Графическая интерпретация уравнений с двумя переменными и их систем. Элементы логики, комбинаторики, статистики и теории вероятностей. Множества и комбинаторика. Объединение и пересечение множеств. Взаимное однозначное соответствие. Замкнутость множества относительно операции сложения (умножения, деления, вычитания). Число элементов объединения и пересечения двух конечных множеств. Понятие о мощности множеств. Принцип Дирихле. Статистические данные. Интервальный ряд данных. Относительная частота варианты. 9 класс Арифметика Действительные числа. Корень n-ой степени. Степень с рациональным показателем. Измерение углов. Радиан. Радианная мера угла. Синус, косинус, тангенс и котангенс произвольного угла (в градусах и в радианах). Алгебра Алгебраические выражения. Деление многочлена с остатком. Делимость многочленов. Теорема Безу и её следствие о делимости многочлена на линейный двучлен. Степень с рациональным показателем и её свойства. Свойства арифметических корней n-ой степени. Свойства степеней с рациональным показателем. Преобразование выражений с радикалами и степенями с дробным показателем. Основные тригонометрические тождества. Формулы приведения. Синус, косинус, тангенс двойного и половинного угла. Тождественные преобразования тригонометрических выражений. Преобразование суммы тригонометрических функций в произведение. Преобразование произведения тригонометрических функций в сумму. Уравнения и неравенства. Уравнения, приводимые к квадратным. Примеры решения уравнений высших степеней; методы замены переменной, разложение на множители. Возвратные уравнения. Однородные уравнения. Решение рациональных уравнений с параметром. Примеры решения иррациональных уравнений. Уравнения с двумя переменными. Примеры решения нелинейных систем. Примеры решения нелинейных уравнений в целых числах. Неравенства с одной переменной. Решение неравенств. Квадратные неравенства. Дробно – рациональные неравенства. Метод интервалов. Переход от словесной формулировки соотношений между величинами к алгебраической и обратно. Решение текстовых задач алгебраическим способом. Числовые функции. Преобразование графиков функций: растяжение, сжатие, параллельный перенос вдоль осей координат, симметрия относительно осей координат и прямой y=x. Свойства функции: чётность и нечётность, возрастание и убывание (монотонность), нули функции и промежутки знакопостоянства, ограниченность функции, наибольшее и наименьшее значения функции. Отражение свойств функции на графике. Элементарное исследование функции. Элементарные функции. Квадратичная функция, её график. Координаты вершины параболы, ось симметрии. Функция y n x и её график. Построение функций, связанных с модулем. Примеры построения графиков рациональных функций. Использование графиков функций для решения уравнений и систем. Функции y x и y x. Числовые последовательности. Способы задания числовых последовательностей. Формула n-го члена. Рекуррентная формула. Числа Фибоначчи. Возрастающие и убывающие (монотонные) последовательности. Ограниченные последовательности. Арифметическая и геометрическая прогрессии, формулы n-го члена и суммы n первых членов прогрессии. Бесконечно убывающая геометрическая прогрессия. Понятие о пределе последовательности. Координаты. График уравнения с двумя переменными. Уравнение окружности. Графическая интерпретация уравнений и неравенств с двумя переменными и их систем. Элементы логики, комбинаторики, статистики и теории вероятностей. Множества и комбинаторика. Метод математической индукции. Комбинированный принцип умножения. Число элементов прямого произведения двух множеств. Число подмножеств конечного множества. Число k-элементных подмножеств конечного множества из n элементов (число сочетаний). Число перестановок. Понятие вероятности события. Подсчёт вероятностей простейших событий. 4. Тематическое планирование 8 класс № 1 2 3 4 5 Тема Повторение материала 7 класса Дроби Целые числа. Делимость чисел Действительные числа. Квадратный корень Квадратные уравнения 6 7 8 9 Неравенства Степень с целым показателем Функции и графики Итоговое повторение Итого Количество учебных часов 6 23 19 29 32 21 14 18 8 170 9 класс № 1 2 3 4 5 6 7 8 Тема Функции, их свойства и графики Уравнения и неравенства с одной переменной Системы уравнений и системы неравенств переменными Последовательности Степени и корни с двумя Количество учебных часов 22 29 20 26 17 Тригонометрические функции и их свойства Элементы комбинаторики и теории вероятностей Итоговое повторение Итого 27 16 13 170 Обеспеченность материально – техническими и информационно – техническими ресурсами. Наименование объектов и средств материально – технического обеспечения Примечания Книгопечатная продукция Программы 1. Программа по алгебре для классов с углублённым изучением математики общеобразовательных учреждений. Автор – составитель И.Е. Феоктистов Учебники 1. Алгебра. 8кл. Учебник Макарычев Ю.Н. 2. Алгебра. 9кл. Учебник Макарычев Ю.Н. . Проверочные работы 1. И.Е. Феоктистов материалы. 8 кл. 2. И.Е. Феоктистов материалы. 9 кл. В программе определены цели и задачи курса, рассмотрены особенности содержания и результаты его усвоения, представлены содержание обучения математике, тематическое планирование, описано материально - техническое обеспечение образовательного процесса. В учебниках представлен материал, соответствующий программе и позволяющий сформировать у школьников систему математических знаний, необходимых для продолжения изучения математики, представлена система учебных задач, направленных на формирование и последовательную отработку универсальных учебных действий, на развитие логического и алгоритмического мышления, пространственного воображения и математической речи учащихся. Пособия содержат тексты самостоятельных и контрольных работ и предметные тесты с выбором правильного ответа. Проверочные работы составлены по отдельным, наиболее Дидактические важным вопросам изучаемых тем. Тесты обеспечивают итоговую самопроверку Дидактические знаний по всем изученным темам В пособиях раскрываются содержание изучаемых математических понятий, их взаимосвязи, связи математики с окружающей действительностью, рассматривается использование математических методов для решения Методические пособия для учителя 1. И.Е. Феоктистов Методические учебных и практических задач, приводится рекомендации. 8 кл. психологическое и дидактическое 2. И.Е. Феоктистов Методические обоснование методических вопросов и рекомендации. 9 кл подходов к формированию умения учиться. Теоретические выкладки сопровождаются ссылками на соответствующие фрагменты учебников. Пособия для учителей содержат наиболее эффективные устные упражнения к каждому уроку учебника. Выполнение включённых в пособия упражнений повышает мотивацию, побуждает учащихся решать поставленные учебно – познавательные задачи, переходить от известного к неизвестному, расширять и углублять знания, осваивать новые способы действий. Печатные пособия 1. Математика. Комплект таблиц по алгебре. 7-9 Комплект охватывает большую часть класс основных вопросов каждого года обучения. Материал таблиц позволяет наглядно показать смысл различных качественных и пространственных отношений предметов, В комплект также включены таблицы справочного характера. Компьютерные и информационно – коммуникативные средства Диски предназначены для самостоятельной Электронные учебные пособия 1. ЦОР работы учащихся на уроках или для работы в 2. 1С Образование 4. Школа. домашних условиях. 3. Математика не для отличников (3 диска CDROM) Мультимедийный учебный курс для 7-9 кл. 4. УМК Живая математика Интернет – ресурсы http://mon.gov.ru/pro/fgos/ http://www.fipi.ru/ http://www.ege.edu.ru/ http://mathege.ru:8080/or/ege/Main http://www.mioo.ru/ogl.php http://www.mecme.ru/ http://pedsovet.org/ http://www.etudes.ru/ http://math.mioo.ru/ 1. 2. 3. 4. Технические средства Классная доска. Магнитная доска. Интерактивная доска Персональный компьютер с принтером. Организация текущего и промежуточного контроля знаний Из общего количества часов на тематические контрольные работы отводится 15часов: 8 часов – в 8 классе и 7 + 4 СтатГрад – в 9 классе. В зависимости от динамики и качества усвоения материала в течение учебного года может быть произведено перераспределение часов. График контрольных работ Класс 8 9 Форма контроля Контрольная работа № 1 «Дроби» Контрольная работа № 2 «Целые числа. Делимость чисел» Контрольная работа № 3 «Действительные числа. Квадратный корень» Контрольная работа № 4 «Квадратные уравнения» Контрольная работа № 5 «Неравенства» Контрольная работа № 6 «Степень с целым показателем» Контрольная работа № 7 «Функции и их графики» Контрольная работа № 8 «Итоговая» 2-х часовая Контрольная работа № 1 «Функции и их графики» Контрольная работа № 2 «Уравнения и неравенства» Контрольная работа № 3 «Системы уравнений и неравенств» Контрольная работа № 4 «Последовательности» Контрольная работа № 5 «Степени и корни» Контрольная работа № 6 «Тригонометрические функции» Контрольная работа № 7 «Элементы комбинаторики и теории вероятности» Дата октябрь ноябрь декабрь февраль апрель апрель май май сентябрь ноябрь декабрь февраль март май май Преобладающие формы организации учебной работы учащихся: фронтальная, индивидуальная, парная, реже групповая. В данных классах ведущими методами обучения предмету являются: поисковый, объяснительно-иллюстративный и репродуктивный. На уроках используются элементы следующих технологий: внутриклассной дифференциации, ИКТ, здоровьесберегающие, обучение в сотрудничестве, лекционно-зачётной. Текущий контроль осуществляется с помощью взаимоконтроля, опросов, самостоятельных, тестовых и контрольных работ, устных и письменных математических диктантов, практических работ. Особенности оценки результатов Оценка результатов представляет собой оценку достижения обучающимся планируемых результатов по предмету. Система оценки предметных результатов освоения программы с учётом уровневого подхода, принятого в Стандарте, предполагает выделение базового уровня достижений как точки отсчёта при построении всей системы оценки и организации индивидуальной работы с обучающимися. Реальные достижения обучающихся могут соответствовать базовому уровню, а могут отличаться от него как в сторону превышения, так и в сторону недостижения. Практика показывает, что для описания достижений обучающихся целесообразно установить следующие пять уровней. Базовый уровень достижений — уровень, который демонстрирует освоение учебных действий с опорной системой знаний в рамках диапазона (круга) выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следующей ступени образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «3» Превышение базового уровня свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о кругозоре, широте (или избирательности) интересов. Целесообразно выделить следующие два уровня, превышающие базовый: • повышенный уровень достижения планируемых результатов (отметка «4»); • высокий уровень достижения планируемых результатов (отметка «5»). Повышенный и высокий уровни достижения отличаются по полноте освоения планируемых результатов, уровню овладения учебными действиями и сформированностью интересов к данной предметной области. Решение о достижении или недостижении планируемых результатов или об освоении или неосвоении учебного материала принимается на основе результатов выполнения заданий базового уровня. В период введения Стандарта критерий достижения/освоения учебного материала задаётся как выполнение не менее 50% заданий базового уровня или получение 50% от максимального балла за выполнение заданий базового уровня. Нормы оценок письменных работ по математике Единые нормы являются основой при оценке как контрольных, так и всех других письменных работ по математике. Они обеспечивают единство требований к обучающимся со стороны всех учителей образовательного учреждения, сравнимость результатов обучения в разных классах. Применяя эти нормы, учитель должен индивидуально подходить к оценке каждой письменной работы учащегося, обращать внимание на качество выполнения работы в целом, а затем уже на количество ошибок и на их характер. Содержание и объем материала, включаемого в контрольные письменные работы, а также в задания для повседневных письменных упражнений, определяются требованиями, установленными программой. Оценка письменной работы определяется с учетом прежде всего ее общего математического уровня, оригинальности, последовательности, логичности ее выполнения, а также числа ошибок и недочетов и качества оформления работы. Оценка «5» ставится за безукоризненное выполнение письменной работы, т.е.: а) если решение верное; б) если все действия и преобразования выполнены правильно, без ошибок; все записи хода решения расположены последовательно, а также сделана проверка решения в тех случаях, когда это требуется. Оценка «4» ставится за работу, в которой допущена одна (негрубая) ошибка или два-три недочета. Оценка «3» ставится в следующих случаях: а) если в работе имеется одна грубая ошибка и не более одной негрубой ошибки; б) при наличии одной грубой ошибки и одного-двух недочетов; в) при отсутствии грубых ошибок, но при наличии от двух до четырех (негрубых) ошибок; г) при наличии двух негрубых ошибок и не более трех недочетов; д) при отсутствии ошибок, но при наличии четырех и более недочетов; е) если неверно выполнено не более половины объема всей работы. Оценка «2» ставится, когда число ошибок превосходит норму, при которой может быть выставлена положительная оценка, или если правильно выполнено менее половины всей работы. Оценка «1» ставится, если ученик совсем не выполнил работу. Примечание. Оценка «5» может быть поставлена, несмотря на наличие одного-двух недочетов, если ученик дал оригинальное решение заданий, свидетельствующее о его хорошем математическом развитии. В соответствии с особенностями математики как учебного предмета оценки за письменные работы имеют большее значение, чем оценки за устные ответы и другие виды работ. Поэтому при выведении итоговой оценки за четверть «среднеарифметический подход» недопустим - такая оценка не отражает достаточно объективно уровень подготовки и математического развития ученика. Итоговую оценку определяют, в первую очередь, оценки за контрольные работы, затем - принимаются во внимание оценки за другие письменные и практические работы, и лишь в последнюю очередь - все прочие оценки (за устные ответы, устный счет и т.д.). При этом учитель должен учитывать и фактический уровень знаний и умений ученика на конец четверти. Итоговая оценка за год выставляется на основании четвертных оценок, но также с обязательным учетом фактического уровня знаний ученика на конец учебного года.