Рабочая программа учебного курса «Геометрия». Пояснительная записка. Геометрия является одним из базовых курсов на уровне среднего общего образования, так как обеспечивает возможность изучения дисциплин естественно-научной направленности и предметов гуманитарного цикла. Поскольку логическое мышление, формируемое при изучении обучающимися понятийных основ геометрии, при доказательстве теорем и построении цепочки логических утверждений при решении геометрических задач, умение выдвигать и опровергать гипотезы непосредственно используются при решении задач естественно-научного цикла, в частности физических задач. Цель на освоения углублённом программы уровне – учебного развитие курса «Геометрия» индивидуальных способностей обучающихся при изучении геометрии, как составляющей предметной области «Математика и информатика» через обеспечение возможности приобретения и использования более глубоких геометрических знаний и действий, специфичных геометрии, и необходимых для успешного профессионального образования, связанного с использованием математики. Приоритетными задачами курса геометрии на углублённом уровне, расширяющими и усиливающими курс базового уровня, являются: расширение представления о геометрии как части мировой культуры и формирование осознания взаимосвязи геометрии с окружающим миром; формирование представления о пространственных фигурах как о важнейших математических моделях, позволяющих описывать и изучать разные явления окружающего мира, знание понятийного аппарата по разделу «Стереометрия» школьного курса геометрии; формирование умения владеть основными понятиями о пространственных фигурах и их основными свойствами, знание теорем, формул и умение их применять, умения доказывать теоремы и находить нестандартные способы решения задач; формирование умения распознавать на чертежах, моделях и в реальном мире многогранники и тела вращения, конструировать геометрические модели; формирование понимания возможности аксиоматического построения математических теорий, формирование понимания роли аксиоматики при проведении рассуждений; формирование умения владеть методами доказательств и алгоритмов решения, умения их применять, проводить доказательные рассуждения в ходе решения стереометрических задач и задач с практическим содержанием, формирование представления о необходимости доказательств при обосновании математических утверждений и роли аксиоматики в проведении дедуктивных рассуждений; развитие и совершенствование интеллектуальных и творческих способностей обучающихся, познавательной активности, исследовательских умений, критичности мышления, интереса к изучению геометрии; формирование функциональной грамотности, релевантной геометрии: умения распознавать проявления геометрических понятий, объектов и закономерностей в реальных жизненных ситуациях и при изучении других учебных предметов, проявления зависимостей и закономерностей, моделирования реальных ситуаций, исследования построенных моделей, интерпретации полученных результатов. Основными содержательными линиями курса «Геометрии» в 10–11 классах являются: «Прямые и плоскости в пространстве», «Многогранники», «Тела вращения», «Векторы и координаты в пространстве», «Движения в пространстве». Сформулированное в Федеральном государственном образовательном стандарте среднего общего образования требование «уметь оперировать понятиями», релевантных геометрии на углублённом уровне обучения в 10– 11 классах, относится ко всем содержательным линиям учебного курса, а формирование логических умений распределяется не только по содержательным линиям, но и по годам обучения. Содержание образования, соответствующее предметным результатам освоения Примерной рабочей программы, распределённым по годам обучения, структурировано таким образом, чтобы ко всем основным, принципиальным вопросам обучающиеся обращались неоднократно. Это позволяет организовать овладение геометрическими понятиями и навыками последовательно и поступательно, с соблюдением принципа преемственности, а новые знания включать в общую систему геометрических представлений обучающихся, расширяя и углубляя её, образуя прочные множественные связи. Переход к изучению геометрии на углублённом уровне позволяет: создать условия индивидуальных для дифференциации образовательных программ, обучения, обеспечить построения углублённое изучение геометрии как составляющей учебного предмета «Математика»; подготовить обучающихся к продолжению изучения математики с учётом выбора будущей профессии, обеспечивая преемственность между общим и профессиональным образованием. Общее число часов, рекомендованных для изучения учебного курса «Геометрия» на углубленном уровне - 204 часа: в 10 классе - 102 часа (3 часа в неделю), в 11 классе - 102 часа (3 часа в неделю). Содержание обучения в 10 классе. Прямые и плоскости в пространстве. Основные понятия стереометрии. Точка, прямая, плоскость, пространство. Понятие об аксиоматическом построении стереометрии: аксиомы стереометрии и следствия из них. Взаимное расположение прямых в пространстве: пересекающиеся, параллельные и скрещивающиеся прямые. Признаки скрещивающихся прямых. Параллельность прямых и плоскостей в пространстве: параллельные прямые в пространстве, параллельность трёх прямых, параллельность прямой и плоскости. Параллельное и центральное проектирование, изображение фигур. Основные свойства параллельного проектирования. Изображение фигур в параллельной проекции. Углы с сонаправленными сторонами, угол между прямыми в пространстве. Параллельность плоскостей: параллельные плоскости, свойства пространственные параллельных фигуры на плоскости: плоскостей. тетраэдр, Простейшие параллелепипед, построение сечений. Перпендикулярность прямой и плоскости: перпендикулярные прямые в пространстве, прямые параллельные и перпендикулярные к плоскости, признак перпендикулярности прямой и плоскости, теорема о прямой перпендикулярной плоскости. Ортогональное проектирование. Перпендикуляр и наклонные: расстояние от точки до плоскости, расстояние от прямой до плоскости, Перпендикулярность плоскостей: проекция признак фигуры на плоскость. перпендикулярности двух плоскостей. Теорема о трёх перпендикулярах. Углы в пространстве: угол между прямой и плоскостью, двугранный угол, линейный угол двугранного угла. Трёхгранный и многогранные углы. Свойства плоских углов многогранного угла. Свойства плоских и двугранных углов трёхгранного угла. Теоремы косинусов и синусов для трёхгранного угла. Многогранники. Виды многогранников, развёртка многогранника. Призма: n-угольная призма, прямая и наклонная призмы, боковая и полная поверхность призмы. Параллелепипед, Кратчайшие пути прямоугольный на параллелепипед поверхности многогранника. и его Теорема свойства. Эйлера. Пространственная теорема Пифагора. Пирамида: n-угольная пирамида, правильная и усечённая пирамиды. Свойства рёбер и боковых граней правильной пирамиды. Правильные многогранники: правильная призма и правильная пирамида, правильная треугольная пирамида и правильный тетраэдр, куб. Представление о правильных многогранниках: октаэдр, додекаэдр и икосаэдр. Вычисление элементов многогранников: рёбра, диагонали, углы. Площадь боковой поверхности и полной поверхности прямой призмы, площадь оснований, теорема о боковой поверхности прямой призмы. Площадь боковой поверхности и поверхности пирамиды, теорема о площади усечённой пирамиды. пространстве. Элементы симметрии правильных правильной Симметрия в многогранников. Симметрия в правильном многограннике: симметрия параллелепипеда, симметрия правильных призм, симметрия правильной пирамиды. Векторы и координаты в пространстве. Понятия: вектор в пространстве, нулевой вектор, длина ненулевого вектора, векторы коллинеарные, сонаправленные и противоположно направленные векторы. Равенство векторов. Действия с векторами: сложение и вычитание векторов, сумма нескольких векторов, умножение вектора на число. Свойства сложения векторов. Свойства умножения вектора на число. Понятие компланарные векторы. Признак компланарности трёх векторов. Правило параллелепипеда. Теорема о разложении вектора по трём некомпланарным векторам. Прямоугольная система координат в пространстве. Координаты вектора. Связь между координатами вектора и координатами точек. Угол между векторами. Скалярное произведение векторов. Содержание обучения в 11 классе. Тела вращения. Понятия: цилиндрическая поверхность, коническая поверхность, сферическая поверхность, образующие поверхностей. Тела вращения: цилиндр, конус, усечённый конус, сфера, шар. Взаимное расположение сферы и плоскости, касательная плоскость к сфере. Изображение тел вращения на плоскости. Развёртка цилиндра и конуса. Симметрия сферы и шара. Объём. Основные свойства объёмов тел. Теорема об объёме прямоугольного параллелепипеда и следствия из неё. Объём прямой и наклонной призмы, цилиндра, пирамиды и конуса. Объём шара и шарового сегмента. Комбинации тел вращения и многогранников. Призма, вписанная в цилиндр, описанная около цилиндра. Пересечение сферы и шара с плоскостью. Касание шара и сферы плоскостью. Понятие многогранника, описанного около сферы, сферы, вписанной в многогранник или тело вращения. Площадь поверхности цилиндра, конуса, площадь сферы и её частей. Подобие в пространстве. Отношение объёмов, площадей поверхностей подобных фигур. Преобразование подобия, гомотетия. Решение задач на плоскости с использованием стереометрических методов. Построение сечений многогранников и тел вращения: сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельное основанию и проходящее через вершину), сечения шара, методы построения сечений: метод следов, метод внутреннего проектирования, метод переноса секущей плоскости. Векторы и координаты в пространстве. Векторы в пространстве. Операции над векторами. Векторное умножение векторов. Свойства векторного умножения. Прямоугольная система координат в пространстве. Координаты вектора. Разложение вектора по базису. Координатно-векторный метод при решении геометрических задач. Движения в пространстве. Движения пространства. Отображения. Движения и равенство фигур. Общие свойства движений. Виды движений: параллельный перенос, центральная симметрия, зеркальная симметрия, поворот вокруг прямой. Преобразования подобия. Прямая и сфера Эйлера. Планируемые результаты Программа обеспечивает достижение следующих результатов освоения образовательной программы среднего общего образования: Планируемые личностные результаты: сформированность ответственного отношения к учению, готовность и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору дальнейшего образования на базе профессиональных ориентировки предпочтений, в мире осознанному профессий и построению индивидуальной образовательной траектории с учётом устойчивых познавательных интересов; сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики; сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, старшими и младшими, в образовательной, общественно полезной, учебно-исследовательской, творческой и других видах деятельности; умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры; представление о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации; критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта; креативность мышления, инициатива, находчивость, активность при решении алгебраических задач; умение контролировать процесс и результат учебной математической деятельности; способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений. Планируемые метапредметные результаты: умение самостоятельно планировать альтернативные пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение осуществлять контроль по результату и по способу действия на уровне произвольного внимания и вносить необходимые коррективы; умение адекватно оценивать правильность или ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения; осознанное владение логическими действиями определения понятий, обобщения, установления аналогий, классификации на основе самостоятельного выбора оснований и критериев, установления родовидовых связей; умение устанавливать причинно-следственные связи; строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и выводы; умение создавать, применять и преобразовывать знаковосимволические средства, модели и схемы для решения учебных и познавательных задач; умение организовывать деятельность с учебное учителем и сотрудничество сверстниками: и совместную определять цели, распределение функций и ролей участников, взаимодействие и общие способы работы; умение работать в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение; сформированность учебной и общепользовательской компетентности в области использования информационно-коммуникационных технологий (ИКТ-компетентности); первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов; умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни; умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять её в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации; умение понимать и использовать математические средства наглядности (рисунки, чертежи, схемы и др.) для иллюстрации, интерпретации, аргументации; умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки; умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач; понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом; умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем; умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера. Планируемые предметные результаты К концу 10 класса обучающийся научится: свободно оперировать основными понятиями стереометрии при решении задач и проведении математических рассуждений; применять аксиомы стереометрии и следствия из них при решении геометрических задач; классифицировать взаимное расположение прямых в пространстве, плоскостей в пространстве, прямых и плоскостей в пространстве; свободно оперировать понятиями, связанными с углами в пространстве: между прямыми в пространстве, между прямой и плоскостью; свободно оперировать понятиями, связанными с многогранниками; свободно распознавать основные виды многогранников (призма, пирамида, прямоугольный параллелепипед, куб); классифицировать многогранники, выбирая основания для классификации; свободно оперировать понятиями, связанными с сечением многогранников плоскостью; выполнять параллельное, центральное и ортогональное проектирование фигур на плоскость, выполнять изображения фигур на плоскости; строить сечения многогранников различными методами, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу; вычислять площади поверхностей многогранников (призма, пирамида), геометрических тел с применением формул; свободно оперировать понятиями: симметрия в пространстве, центр, ось и плоскость симметрии, центр, ось и плоскость симметрии фигуры; свободно оперировать понятиями, соответствующими векторам и координатам в пространстве; выполнять действия над векторами; решать задачи на доказательство математических отношений и нахождение геометрических величин, применяя известные методы при решении математических задач повышенного и высокого уровня сложности; применять простейшие программные средства и электронно- коммуникационные системы при решении стереометрических задач; извлекать, преобразовывать и интерпретировать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках; применять полученные знания на практике: сравнивать и анализировать реальные ситуации, применять изученные понятия в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин; иметь представления об основных этапах развития геометрии как составной части фундамента развития технологий. К концу 11 класса обучающийся научится: свободно оперировать понятиями, связанными с цилиндрической, конической и сферической поверхностями, объяснять способы получения; оперировать понятиями, связанными с телами вращения: цилиндром, конусом, сферой и шаром; распознавать тела вращения (цилиндр, конус, сфера и шар) и объяснять способы получения тел вращения; классифицировать взаимное расположение сферы и плоскости; вычислять величины элементов многогранников и тел вращения, объёмы и площади поверхностей многогранников и тел вращения, геометрических тел с применением формул; свободно оперировать понятиями, связанными с комбинациями тел вращения и многогранников: многогранник, вписанный в сферу и описанный около сферы, сфера, вписанная в многогранник или тело вращения; вычислять соотношения между площадями поверхностей и объёмами подобных тел; изображать изучаемые фигуры, выполнять (выносные) плоские чертежи из рисунков простых объёмных фигур: вид сверху, сбоку, снизу, строить сечения тел вращения; извлекать, интерпретировать и преобразовывать информацию о пространственных геометрических фигурах, представленную на чертежах и рисунках; свободно оперировать понятием вектор в пространстве; выполнять операции над векторами; задавать плоскость уравнением в декартовой системе координат; решать геометрические задачи на вычисление углов между прямыми и плоскостями, вычисление расстояний от точки до плоскости, в целом, на применение векторно-координатного метода при решении; свободно оперировать понятиями, связанными с движением в пространстве, знать свойства движений; выполнять изображения многогранником и тел вращения при параллельном переносе, центральной симметрии, зеркальной симметрии, при повороте вокруг прямой, преобразования подобия; строить сечения многогранников и тел вращения: сечения цилиндра (параллельно и перпендикулярно оси), сечения конуса (параллельное основанию и проходящее через вершину), сечения шара; использовать методы построения сечений: метод следов, метод внутреннего проектирования, метод переноса секущей плоскости; доказывать геометрические утверждения; применять геометрические факты для решения стереометрических задач, предполагающих несколько шагов решения, если условия применения заданы в явной и неявной форме; решать задачи на доказательство математических отношений и нахождение геометрических величин; применять программные средства и электронно-коммуникационные системы при решении стереометрических задач; применять полученные знания на практике: сравнивать, анализировать и оценивать реальные ситуации, применять изученные понятия, теоремы, свойства в процессе поиска решения математически сформулированной проблемы, моделировать реальные ситуации на языке геометрии, исследовать построенные модели с использованием геометрических понятий и теорем, аппарата алгебры, решать практические задачи, связанные с нахождением геометрических величин; иметь представления об основных этапах развития геометрии как составной части фундамента развития технологий. Тематическое планирование. 10 класс Тематические разделы № п/п 1 2 3 4 5 6 Введение Параллельность прямых и плоскостей Перпендикулярность прямых и плоскостей Многогранники Некоторые сведения из планиметрии Итоговое повторение ИТОГО Кол-во часов 6 24 30 28 10 4 102 Контрольные и диагностические мероприятия 2 1 1 1 1 6 11 класс № п/п 1 2 3 4 5 Тематические разделы Векторы в пространстве Метод координат в пространстве. Движения. Цилиндр, конус, шар Объёмы тел Итоговое повторение ИТОГО Кол-во часов 6 17 29 42 8 102 Контрольные и диагностические мероприятия 1 1 2 1 5 Критерии оценивания Рабочей программой предусмотрены следующие виды контроля усвоения материала: текущий контроль по геометрии осуществляется путем устного, письменного опроса, выполнения самостоятельных работ, тестовых заданий (в том числе электронных), контрольных работ; итоговый контроль по геометрии организован в форме тестовых заданий по структуре, приближенных к ЕГЭ. Оценка письменных контрольных и самостоятельных работ обучающихся по математике. Ответ оценивается отметкой «5», если: работа выполнена полностью; в логических рассуждениях и обосновании решения нет пробелов и ошибок; в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала). Отметка «4» ставится в следующих случаях: работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки); допущены одна ошибка или есть два – три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки). Отметка «3» ставится, если: допущено более одной ошибки или более двух – трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме. Отметка «2» ставится, если: допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере. Учитель может повысить отметку за оригинальный ответ на вопрос или оригинальное решение задачи, которые свидетельствуют о высоком математическом развитии обучающегося; за решение более сложной задачи или ответ на более сложный вопрос, предложенные обучающемуся дополнительно после выполнения им каких-либо других заданий. Оценка устных ответов обучающихся по математике Устный опрос осуществляется на каждом уроке (эвристическая беседа, опрос). Задачей устного опроса является не столько оценивание знаний учащихся, сколько определение проблемных мест в усвоении учебного материала и фиксирование внимания учеников на сложных понятиях, явлениях, процессе. Ответ оценивается отметкой «5», если ученик: полно раскрыл содержание материала в объеме, предусмотренном программой и учебником; изложил материал грамотным языком, точно используя математическую терминологию и символику, в определенной логической последовательности; правильно выполнил рисунки, чертежи, графики, сопутствующие ответу; показал умение иллюстрировать теорию конкретными примерами, применять ее в новой ситуации при выполнении практического задания; продемонстрировал знание теории ранее изученных сопутствующих тем, сформированность и устойчивость используемых при ответе умений и навыков; отвечал самостоятельно, без наводящих вопросов учителя; возможны одна – две неточности при освещение второстепенных вопросов или в выкладках, которые ученик легко исправил после замечания учителя. Ответ оценивается отметкой «4», если удовлетворяет в основном требованиям на оценку «5», но при этом имеет один из недостатков: в изложении допущены небольшие пробелы, не исказившее математическое содержание ответа; допущены один – два недочета при освещении основного содержания ответа, исправленные после замечания учителя; допущены ошибка или более двух недочетов при освещении второстепенных вопросов или в выкладках, легко исправленные после замечания учителя. Отметка «3» ставится в следующих случаях: неполно раскрыто содержание материала (содержание изложено фрагментарно, не всегда последовательно), но показано общее понимание вопроса и продемонстрированы умения, достаточные для усвоения программного материала (определены «Требованиями к математической подготовке обучающихся» в настоящей программе по математике); имелись затруднения или допущены ошибки в определении математической терминологии, чертежах, выкладках, исправленные после нескольких наводящих вопросов учителя; ученик не справился с применением теории в новой ситуации при выполнении практического задания, но выполнил задания обязательного уровня сложности по данной теме; при достаточном знании теоретического материала выявлена недостаточная сформированность основных умений и навыков. Отметка «2» ставится в следующих случаях: не раскрыто основное содержание учебного материала; обнаружено незнание учеником большей или наиболее важной части учебного материала; допущены ошибки в определении понятий, при использовании математической терминологии, в рисунках, чертежах или графиках, в выкладках, которые не исправлены после нескольких наводящих вопросов учителя. Тестирование. Актуальность широкого введения тестирования в школьную практику вызвана тем, что всё чаще ученикам предлагается именно такая форма проверочных заданий. Основными достоинствами тестовой формы контроля знаний является: учёт индивидуальных особенностей учащихся; проверка уровня усвоения не только практического, но и теоретического учебного материала; возможность детальной проверки усвоения каждой темы курса; осуществление оперативной диагностики уровня овладения учебным материалом каждым учеником; экономия учебного времени при проверке знаний и оценке результатов обученности; возможность вариативной проверки знаний учащихся. Тематические и итоговые тесты делятся на пять видов в зависимости от целей проверки и формы их предъявления учащимся. Первый вид тестовых заданий предполагает заполнение пропусков в утверждениях, формулировках определений, теорем, свойствах здесь же, в тексте. Эти задания в основном направлены на проверку уровня овладения учащимися теоретическим учебным материалом и понимания смысла изученного на репродуктивном уровне. Второй вид тестовых заданий – установление учащимися истинности или ложности сформулированного утверждения. Эти задания в основном направлены на проверку понимания изученного учебного материала на продуктивном уровне и могут быть использованы при первичном закреплении изученного учебного материала в письменной, устной или полуустной форме. Третий вид тестовых заданий предполагает выбор одного из нескольких предложенных ответов верного, который отмечается в тексте. Четвёртый вид тестовых заданий предполагает запись краткого ответа. При этом не требуется приводить решение или объяснение полученного ответа. Задания третьего и четвёртого видов направлены на проверку умений учащихся применять полученные знания на практике. Пятый вид тестовых заданий предполагает запись полного решения с необходимыми пояснениями и обоснованиями. Задания этого вида позволяют выяснить владение формально-оперативным математическим аппаратом, способность к интеграции знаний из различных тем школьного курса, владение исследовательскими навыками, а также умение найти и применить нестандартные приёмы рассуждений. Тест, как и любая проверяющая работа, должен отвечать своему месту в программе, быть своевременным, а также согласовываться с целями и задачами, которые ставит учитель в данном конкретном случае ,т.е. быть результативным. Критерий достижения/освоения учебного материала задаётся как выполнение не менее 50% заданий или получение 50% от максимального балла за выполнение заданий.